# Introduction to Robotics 

ISS3180-01

Professor Mannan Saeed Muhammad

## Robot Process



## Robot Control Unit and Feedback

- Controller
- 8051 Microcontroller
- Programmable Logic Controllers
- Signal Converters
- Analog to Digital
- Digital to Analog


## Functions of Controllers

- on-off control
- sequential control
- feedback control
- motion control


## What to Control?

- mechanical control
- cam, governor, etc.
- pneumatic control
- compressed air, valves, etc.
- electromechanical control
- switches, relays, a timer, counters, etc.
- electronics control
- similar to electromechanical control, except uses electronic switches
- computer control
- computational, algorithm, etc.


## 80C51 Block Diagram



## 80C51 Memory



## 8051 Memory

- The data width is 8 bits
- Registers are 8 bits
- Addresses are 8 bits
- i.e. addresses for only 256 bytes!
- PC is 16 bits (up to 64 K program memory)
- DPTR is 16 bits (for external data - up to 64K)
- C types
- char - 8 bits <-- use this if at all possible!
- short - 16 bits
- int - 16 bits
- long - 32 bits
- float - 32 bits
- C standard signed/unsigned


## Accessing External Memory



Figure 4. Executing from External Program Memory


Figure 5. Accessing External Data Memory

## Ports

- Port 0 - external memory access
- low address byte/data
- Port 2 - external memory access
- high address byte
- Port 1 - general purpose I/O
- pins 0, 1 for timer/counter 2
- Port 3 - Special features
- 0 - RxD: serial input
- 1 - TxD: serial output
- 2 - INTO: external interrupt
- 3 - INT1: external interrupt
- 4 - TO: timer/counter 0 external input
- 5-T1: timer/counter 1 external input
- 6 - WR: external data memory write strobe
- 7 - RD: external data memory read strobe


## Ports



## Ports

- Port 0 - true bi-directional
- Port 1-3 - have internal pullups that will source current
- Output pins:
- Just write 0/1 to the bit/byte
- Input pins:
- Output latch must have a 1 (reset state)
- Turns off the pulldown
- pullup must be pulled down by external driver
- Just read the bit/byte


## Program Status Word

## - Register set select

- Status bits


Figure 10. PSW (Program Status Word) Register in 80C51 Devices

## Instruction Timing

- One "machine cycle" = 6 states (S1-S6)
- One state $=2$ clock cycles
- One "machine cycle" = 12 clock cycles
- Instructions take 1-4 cycles
- e.g. 1 cycle instructions: ADD, MOV, SETB, NOP
- e.g. 2 cycle instructions: JMP, JZ
- 4 cycle instructions: MUL, DIV


## Timers

- Base 8051 has 2 timers
- we have 3 in the Atmel 89C55
- Timer mode
- Increments every machine cycle (12 clock cycles)
- Counter mode
- Increments when T0/T1 go from 1-0 (external signal)
- Access timer value directly
- Timer can cause an interrupt
- Timer 1 can be used to provide programmable baud rate for serial communications
- Timer/Counter operation
- Mode control register (TMOD)
- Control register (TCON)


## Mode Control Register (TMOD)

- Modes 0-3
- GATE - allows external pin to enable timer (e.g. external pulse)
- 0: INT pin not used
- 1: counter enabled by INT pin (port 3.2, 3.3)
- $\mathrm{C} / \mathrm{T}$ - indicates timer or counter mode



## Timer/Counter Control Register (TCON)

- TR - enable timer/counter
- TF - overflow flag: can cause interrupt
- IE/IT - external interrupts and type control
- not related to the timer/counter



## Interrupts

- Allow parallel tasking
- Interrupt routine runs in "background"
- Allow fast, low-overhead interaction with environment
- Don't have to poll
- Immediate reaction
- An automatic function call
- Easy to program
- 8051 Interrupts
- Serial port - wake up when data arrives/data has left
- Timer 0 overflow
- Timer 1 overflow
- External interrupt 0
- External interrupt 1


## Timer Interrupts

- Wakeup after N clock cycles, i.e. at a specified time
- Wakeup every N clock cycles (auto reload)
- Allows simple task scheduling
- Clients queue function calls for time i
- Interrupt routine calls functions at the right time
- Wakeup after N events have occurred on an input


## Controlling Interrupts: Enables and Priority

| (MSB) |  |  |  |  |  |  | (LSB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EA | X | X | ES | ET1 | EX1 | ETO | EXO |
| Symbol | Position |  | Function |  |  |  |  |
| EA | IE. 7 |  | Disables all interrupts. If $\overline{E A}=0$, no interrupt will be acknowledged. If $E A=1$, each interrupt source is individually enabled or disabled by setting or clearing its enable bit. |  |  |  |  |
|  | IE. 6 |  | Reserved. |  |  |  |  |
|  | IE. 5 | Reserved. |  |  |  |  |  |
| ES | IE. 4 |  | Enables or disables the Serial Port interrupt. If $\mathrm{ES}=0$, the Serial Port interrupt is disabled. |  |  |  |  |
| ET1 | IE. 3 |  | Enables or disables the Timer 1 Overflow interrupt. If $\mathrm{ET} 1=0$, the Timer 1 interrupt is disabled. |  |  |  |  |
| EX1 | IE. 2 |  | Enables or disables External Interrupt 1. If $\mathrm{EX} 1=0$, External Interrupt 1 is disabled. |  |  |  |  |
| ETO | IE. 1 |  | Enables or disables the Timer 0 Overflow interrupt. If $E T 0=0$, the Timer 0 interrupt is disabled. |  |  |  |  |
| EX0 | IE. 0 |  | Enables or disables Exeternal Interrupt 0 . If $\mathrm{EXO}=0$, External Interrupt 0 is disabled |  |  |  |  |
|  |  |  |  |  |  |  | SU004 |

Figure 17. Interrupt Enable (IE) Register


Figure 18. Interrupt Priority (IP) Register

## Interrupt Priorities

- Two levels of priority
- Set an interrupt priority using the interrupt priority register
- A high-priority interrupt can interrupt an low-priority interrupt routine
- In no other case is an interrupt allowed
- An interrupt routine can always disable interrupts explicitly
- But you don't want to do this
- Priority chain within priority levels
- Choose a winner if two interrupts happen simultaneously
- Order shown on previous page


## External Interrupts

- Can interrupt using the INTO or INT1 pins (port 3: pin 2,3)
- Interrupt on level or falling edge of signal (TCON specifies which)
- Pin is sampled once every 12 clock cycles
- for interrupt on edge, signal must be high 12 cycles, low 12 cycles
- Response time takes at least 3 instuctions cycles
- 1 to sample
- 2 for call to interrupt routine
- more if a long instruction is in progress (up to 6 more)



## PLCs

- Review brief history of PLCs and manufacturing control systems
- Introduce the concepts of discrete control of manufacturing
- Overview ladder logic programming


## Readings

- Chapter 10 of Computer Aided Manufacturing, Chang, Chang, T.C. and Wysk, R. A. and Wang, H.P., $3^{\text {rd }}$ Edition, 2006.


## Types of control

- Temporal - control based in time
- State - control based in state level
- Hybrid - both temporal and state


## PURPOSE OF Programmable Logic Controllers (PLCs)

- Initially designed to replace relay logic boards
- Sequence device actuation
- Coordinate activities
- Accepts input from a series of switches
- Sends output to devices or relays



## PLC Configuration



## What devices does a PLC interact with?

- INPUT RELAYS-(contacts)These are connected to the outside world. They physically exist and receive signals from switches, sensors, etc. Typically they are not relays but rather they are transistors.
- INTERNAL UTILITY RELAYS-(contacts) These do not receive signals from the outside world nor do they physically exist. They are simulated relays and are what enables a PLC to eliminate external relays. There are also some special relays that are dedicated to performing only one task. Some are always on while some are always off. Some are on only once during power-on and are typically used for initializing data that was stored.
- COUNTERS-These again do not physically exist. They are simulated counters and they can be programmed to count pulses. Typically these counters can count up, down or both up and down. Since they are simulated they are limited in their counting speed. Some manufacturers also include high-speed counters that are hardware based. We can think of these as physically existing. Most times these counters can count up, down or up and down.


## What devices does a PLC interact with? Continued

- TIMERS-These also do not physically exist. They come in many varieties and increments. The most common type is an on-delay type. Others include off-delay and both retentive and non-retentive types. Increments vary from 1 ms through 1s.
- OUTPUT RELAYS-(coils)These are connected to the outside world. They physically exist and send on/off signals to solenoids, lights, etc. They can be transistors, relays, or triacs depending upon the model chosen.
- DATA STORAGE-Typically there are registers assigned to simply store data. They are usually used as temporary storage for math or data manipulation. They can also typically be used to store data when power is removed from the PLC. Upon power-up they will still have the same contents as before power was removed. Very convenient and necessary!!


## SWITCHES




## TERMS

Throw - number of states
Pole - number of connecting moving parts (number of individual circuits).


A serial switch box (A-B box) has two 25 pin serial ports to switch from.


How is this switch classified?

## TYPES OF SWITCHES

1. Basic switch, operated by a mechanical level,


RATING: voltage, current

## RELAYS

A switch whose operation is activated by an electromagnet is called a "relay"


Relay coil Output contact


## COUNTER

Digital counters output in the form of a relay contact when a preassigned count value is reached.


## TIMER

A timer consists of an internal clock, a count value register, and an accumulator. It is used for or some timing purpose.


## PLC ARCHITECTURE

Programmable controllers replace most of the relay panel wiring by software programming.


Peripherals

## PLC COMPONENTS

1. Processor

Microprocessor based, may allow arithmetic
operations, logic operators, block memory moves,
computer interface, local area network, functions, etc.
2. Memory Measured in words.

ROM (Read Only Memory),
RAM (Random Access Memory),
PROM (Programmable Read Only Memory),

EEPROM (Electronically Erasable Programmable ROM),
EPROM (Erasable Programmable Read Only Memory),
EAPROM (Electronically Alterable Programmable Read Only Memory), and
some Additonal Memory.

## PLC COMPONENTS

3. I/O Modular plug-in periphery

AC voltage input and output, DC voltage input and output, Low level analog input, High level analog input and output,

Special purpose modules, e.g.., high speed timers,

Stepping motor controllers, etc. PID, Motion
4. Power supply AC power

## LADDER DIAGRAM

A ladder diagram (also called contact symbology) is a means of graphically representing the logic required in a relay logic system.


## Ladder Representation



## AN EXAMPLE OF RELAY LOGIC AND LADDER PROGRAM

For process control, it is desired to have the process start (by turning on a motor) five seconds after a part touches a limit switch. The process is terminated automatically when the finished part touches a second limit switch. An emergency switch will stop the process any time when it is pushed.


## PLC WIRING DIAGRAM



## SCAN

A PLC resolves the logic of a ladder diagram (program) rung by rung, from the top to the bottom. Usually, all the outputs are updated based on the status of the internal registers. Then the input states are checked and the corresponding input registers are updated. Only after the I/Os have been resolved, is the program then executed. This process is run in a endless cycle. The time it takes to finish one cycle is called the scan time.


## PLC INSTRUCTIONS

1) Relay,
2) Timer and counter,
3) Program control,
4) Arithmetic,
5) Data manipulation,
6) Data transfer, and
7) Others, such as sequencers.

## LOGIC STATES

ON : TRUE, contact closure, energize, etc.
OFF: FALSE, contact open, de-energize, etc.

Do not confuse the internal relay and program with the external switch and relay. Internal symbols are used for programming. External devices provide actual interface.
(In the notes we use the symbol "~" to represent negation. AND and OR are logic operators. )

## AND and OR LOGIC



## COMBINED AND \& OR

R1 = PB1 .OR. (PB2 .AND. PB3)


## RELAY

## A Relay consists of two parts, the coil and the contact(s).

Contacts:
a. Normally open

- $1-$
b. Normally closed
c. Off-on transitional
d. On-off transitional

Coil:
-|/I-
-|个|-
-|レ|-
a. Energize Coil
-()-
b. De-energize
-(/)-
c. Latch
-(L)-
d. Unlatch

## TIMERS AND COUNTERS

Timers:
a. Retentive on delay
b. Retentive off delay
c. Reset


RTO reach PR value, output ON RTF reach PR value, output OFF
Counter:
$P R$ value in 0.1 second
a. Counter up
b. Counter down
c. Counter reset
-(CTU)-
-(CTD)-
-(CTR)-

## SEQUENCER

Sequencers are used with machines or processes involving repeating operating cycles which can be segmented into steps.

Output

| Step | A | B | C | Dwell time |
| :--- | :---: | :---: | :---: | :---: |
| 1 | ON | OFF | OFF | 5 sec. |
| 2 | ON | ON | OFF | 10 sec. |
| 3 | OFF | OFF | ON | 3 sec. |
| 4 | OFF | ON | OFF | 9 sec. |

## Rockwell/ Allen Bradley PLC

I/O points are numbered, they correspond to the I/O slot on the PLC.

For A-B controller used in our lab
I/O uses 1-32
Internal relays use 033-098
Internal timers/counters/sequencers use 901-932
Status 951-982

## Programming a PLC

Oil is consumed randomly. The tank needs to be refilled by turning on a pump. Two hydrostatic switches are used to detect a high and low level.


Dispensing oil from a tank

How does it work?


## Signal Converters

- Analog to Digital
- Digital to Analog


## A/D Converter (ADC) Introduction

- A/D Fundamentals
- Sampling
- Quantization
- Factors Affecting A/D Converter Performance
- Static Performance
- Dynamic Performance
- ADC Architectures
- SAR ADCs
- Pipelined ADCs
- Flash Type ADC
- Sigma-Delta ADCs
- High Speed ADC Application Considerations


## The Measurement \& Control Loop



## "REAL WORLD" SAMPLED DATA SYSTEMS CONSIST OF ADCs and DACs



ADC SAMPLED AND QUANTIZED WAVEFORM


DAC RECONSTRUCTED WAVEFORM


## What is an Analog-Digital Converter?



Analog Input

$$
\text { DIGITAL OUTPUT CODE }=\underset{\text { Reference Input }}{\mathrm{X}}\left(2^{\mathrm{N}}-1\right)
$$

- Produces a Digital Output Corresponding to the Value of the Signal Applied to Its Input Relative to a Reference Voltage
- Finite Number of Discrete Values : $2^{\mathrm{N}}$ Resulting in Quantization Uncertainty
- Changes Continuous Time Signal into Discrete Time Sampled Representation
- Sampling and Quantization Impose Fundamental yet Predictable Limitations


## Sampling Process

- Representing a continuous time domain signal at discrete and uniform time intervals
- Determines maximum bandwidth of sampled (ADC) or reconstructed (DAC) signal (Nyquist Criteria)
- Frequency Domain- "Aliasing" for an ADC and "Images" for a DAC



## Quantization Process

- Quantization Process
- Representing an analog signal having infinite resolution with a digital word having finite resolution
- Determines Maximum Achievable Dynamic Range
- Results in Quantization Error/Noise



## Conversion Relationship for an Ideal A/D Converter



## Quantization Noise



## Quantization Noise (con't)



- The RMS value of the quantization noise sawtooth is its peak value, $\mathrm{q} \div 2$, divided by $\sqrt{ } 3$, or $q \div \sqrt{ } 12$
- For Sine Wave Full Scale RMS Value is $2^{(\mathrm{N}-1)} / \sqrt{ } 2$
- For Saw Tooth Quantization Error Signal RMS Value is $q / \sqrt{ } 12$
- Thus $\mathrm{S} / \mathrm{N}$ is $1.225 \times 2^{\mathrm{N}}$
- Expressed in dB as $1.76+6.02 \mathrm{~N}$, where N is the resolution of the $\mathrm{A} / \mathrm{D}$ converter


## Quantization Noise (con't)



- If the quantization noise is uncorrelated with the frequency of the AC input signal, the noise will be spread evenly over the Nyquist bandwidth of $F_{s} / \mathbf{2}$.
- If, however the input signal is locked to a sub-multiple of the sampling frequency, the quantization noise will no longer appear uniform, but as harmonics of the fundamental frequency

ADC Resolution vs. Quantization Parameters

| Resolution, <br> Bits (n) | $2^{\mathrm{n}}$ | LSB, mV <br> $(2.5 \mathrm{~V}$ FS $)$ | $\%$ <br> Full Scale | ppm <br> Full Scale | dB <br> Full Scale |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 256 | 9.77 | 0.391 | 3906 | -48.0 |
| 10 | 1024 | 2.44 | 0.098 | 977 | -60.0 |
| 12 | 4096 | 0.610 | 0.024 | 244 | -72.0 |
| 14 | 16,384 | 0.153 | 0.006 | 61 | -84.0 |
| 16 | 65,536 | 0.038 | 0.0015 | 15 | -96.0 |
| 18 | 262,164 | 0.0095 | 0.00038 | 3.8 | -108.0 |

(1) UNIPOLAR SINGLE ENDED

## Analog Input Signal Definitions


(2) UNIPOLAR DIFFERENTIAL

(3) BIPOLAR SINGLE ENDED

(4) BIPOLAR DIFFERENTIAL

(5) PSEUDO DIFFERENTIAL


## Unipolar and Bipolar Converter Codes



## Factors Affecting A/D Converter

 Performance- Offset And Gain for Unipolar Ranges

OFFSET


Factors Affecting A/D Converter Performance - Offset And Gain for Bipolar Ranges

OFFSET ERROR


## DC Specifications (Ideal)

- Ideal ADC code transitions are exactly 1 LSB apart.
- For an N-bit ADC, there are $2^{\mathrm{N}}$ codes. ( $1 \mathrm{LSB}=\mathrm{FS} /$ $2^{N}$ )
- For this 3-bit ADC, 1 LSB = ( $1 \mathrm{~V} / 2^{3}=1 / 8$ th)
- Each "step" is centered on an eighth of full scale



## DC Specifications (DNL)

- Differential Non-Linearity (DNL) is the deviation of an actual code width from the ideal 1 LSB code width
- Results in narrow or wider code widths than ideal and can result in missing codes
- Results in additive noise/spurs beyond the effects of quantization


## DC Specifications (INL)

- Integral Non-Linearity (INL) is the deviation of an actual code transition point from its ideal position on a straight line drawn between the end points of the transfer function.
- INL is calculated after offset and gain errors are removed
- Results in additive harmonics and spurs


## Successive Approximation ADC

"Recursive" One-Bit Sub-Ranging Architecture


## Successive Approximation ADC



## How a Successive Approximation A/D Converter Works

- Rising/Falling Edge of Convert Start Pulse Resets Logic
- Falling/Rising Edge Begins Conversion Process
- Bit Comparisons Made on Each Clock Edge
- Conversion Time Equals Number of Comparisons
(Resolution) Times Clock Period
- The Accuracy of Conversion Depends on the DAC Linearity and Comparator Noise


## How Successive Approximation Works

EXAMPLE : ANALOG INPUT $=\mathbf{6 . 4 2 8} \mathrm{V}$, REFERENCE $\mathbf{= 1 0 . 0 0 0} \mathrm{V}$


## Successive Approximation ADC

## Advantages to SAR A/D converters <br> -Low Power (12-bit/1.5 MSPS ADC: 1.7 mW ) <br> -Higher resolutions (16-bit/1 MSPS) <br> -Small Die Area and Low Cost <br> - No pipeline delay <br> Tradeoffs to SAR A/D converters <br> -Lower sampling rates <br> Typical Applications <br> -Instrumentation <br> - Industrial control <br> -Data acquisition

## Flash or Parallel ADC

$2 \mathrm{~N}-1$ comparators form the digitizer array, where N is the ADC resolution
Analog input is applied to one side of the comparator array, a 1 lsb reference ladder voltage is applied to the other inputs.
The comparator array is clocked simultaneously and decides in parallel.
Output logic converts from thermometer code to binary


## Flash or Parallel ADC

## Advantages to Flash A/D converters

-Fastest conversion times (up to 1 GSPS)
-Low data latency
Tradeoffs to Flash A/D converters
-Higher power consumption
-High capacitive input is difficult to drive
Typical Applications
-Video digitization
-High-speed data acquisition

## FIRST-ORDER SIGMA-DELTA ADC



OVERSAMPLING, DIGITAL FILTERING, NOISE SHAPING, AND DECIMATION


## DEFINITION OF "NOISE-FREE" CODE RESOLUTION



## SIGMA-DELTA ADCs

## Advantages to Sigma-Delta A/D converters

-High resolutions and accuracy (24-bits)
-Excellent DNL and INL performance

- Noise shaping capability


## Tradeoffs in Sigma-Delta A/D converters

-Limited input bandwidth
-Slower sampling rates

## Typical Applications

-Precision data acquisition and measurement
-Medical instrumentation

# High Speed ADC Time Domain Specifications Considerations 

- Aperture Jitter and Delay
- ADC Pipeline Delay
- Duty Cycle Sensitivity
- DNL Effects



## D/A Converter Introduction

- D/A Fundamentals
- Transfer Function
- Quantization
- Factors Affecting D/A Converter Performance
- Static Performance
- Dynamic Performance
- DAC Architectures
- Resistor String
- R-2R
- Switched Current
- High Speed DAC Application Considerations


## Digital to Analog Converters



## "Real World" Sampled Data Systems Consist Of ADCs and DACs



ADC SAMPLED AND QUANTIZED WAVEFORM


DAC RECONSTRUCTED WAVEFORM


## What is a Digital-Analog Converter? <br> вefrenece input DIGITAL INPUT <br> 

- Produces a Quantized (Discrete Step) Analog Output (Voltage or Current) in Response to Binary Digital Input Code
- Digital Inputs May Be TTL, ECL, CMOS, LVDS...
- A reference quantity (either voltage or current) is accurately divided into binary and/or linear segments.
- The digital input drives switches that connect an appropriate number of segments to the output.
- Finite Number of Discrete Values $: 2^{N}$ Resulting in Quantization Uncertainty
- Sampling and Quantization Impose Fundamental yet Predictable Limitations


## Sampling Process

- Representing a continuous time domain signal at discrete and uniform time intervals
- Determines maximum bandwidth of sampled (ADC) or reconstructed (DAC) signal (Nyquist Criteria)
- Frequency Domain- "Aliasing" for an ADC and "Images" for a DAC



## Quantization Process <br> - Quantization Process

- Representing an analog signal having infinite resolution with a digital word having finite resolution and an analog output which only exists in discrete levels
- Determines Maximum Achievable Dynamic Range
- Results in Quantization Error/Noise



## Conversion Relationship for an Ideal D/A Converter



## DAC Resolution, LSBs and More...

| Resolution, <br> Bits (n) | $2^{\mathrm{n}}$ | LSB, mV <br> (10V FS) | $\%$ <br> Full Scale | ppm <br> Full Scale | dB <br> Full Scale |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 256 | 39.1 | 0.391 | 3906 | -48.0 |
| 10 | 1024 | 9.77 | 0.098 | 977 | -60.0 |
| 12 | 4096 | 2.44 | 0.024 | 244 | -72.0 |
| 14 | 16,384 | 0.610 | 0.006 | 61 | -84.0 |
| 16 | 65,536 | 0.153 | 0.0015 | 15 | -96.0 |
| 18 | 262,164 | 0.038 | 0.00038 | 3.8 | -108.0 |
| 20 | $1,048,576$ | 0.0095 | 0.00010 | 1.0 | -120.0 |

## Unipolar and Bipolar Converter Codes



## Factors Affecting D/A Converter Performance - Offset And Gain for Unipolar Ranges



## Factors Affecting D/A Converter Performance - Offset And Gain for Bipolar Ranges

OFFSET
ERROR


## Monotonicity



## Monotonicity



## Settling Issues



## A Simple D-A Converter Using a Kelvin Divider



- Not a Practical Approach
- Output is Monotonic
- For N Bit Resolution, 2N Resistors (Taps) are Required


## Voltage Segment DAC



## STRING DAC Architecture



- Traditional String DAC requires $2^{n}$ Resistors.
- Main DAC and Sub-DAC leads to $2^{\mathrm{N} / 2}$ $+\left(2^{\mathrm{N} / 2}-1\right)$ Resistors
- Vsubdac=RII(3R)=3R/4. VREF=1
- Rtotal $=R / 4+(3 R) / 4+3 R=4 R$
- $\operatorname{LSB}=$ Vsubdac/3=R/4
- Size, Power, and Cost Reduction.
- Resistor Matching Excellent- DPDM, no Trimming.
- Guaranteed Monotonic
- Voltage Output


## Infinite Sample and Hold Architecture



## A Simple Binary-Weighted D-A Converter



- A Simple Binary-Weighted Network. The Current I is the Sum of the Individual Currents Through R, 2R and 4R.


## R-2R Ladder Network



- R and 2R Values Easy to Trim in Production
- Match to 1 Part in $2 n$ Will Yield $n$ Monotonicity
- Absolute Value Not Important (typ. 10-20 k $\Omega,+/-20 \%$ )
- Voltage vs. Current Switching Mode


## Current Steering Mode



- Constant Input Impedance
- Output Impedance Varies with Code
- Vout = - D X V ref
- REF Bandwidths < 1 MHz
- Nonlinearity Increases with Decreasing Reference


## Segmented R-2R



- 3, 4 or 5 Fully Decoded MSBs followed by R2R Ladder for LSBs
- Less Trimming in Production for Higher Resolution DACs
- Linearity Specs more readily achievable
- Lower Input Impedance - Less Distortion.
- Fixed Input Impedance.


## "Multiplying" DAC



## Voltage Switching Mode



- Output Voltage is Same Polarity as Input
- Constant Output Impedance
- Input Impedance Varies With Code
- $\mathrm{V}_{\text {REF }}$ Limited to 2.0-2.5 Volts
- Allows Single Supply Operation


## CMOS R-2R DAC Equivalent Circuit



## CMOS DAC Equivalent Circuit (con’t)

- $R$ is the Ladder Resistance Seen By The Reference (typ 10-20 kilohms).
- VREF/R = Full Scale Current Output
- D = Digital Code Ratio
- RO, CO = Code-Dependent Output Resistance and Capacitance
- RFB = DAC Internal Feedback Resistor For Use With External Amplifier. Matched and Tracking With R-2R Ladder.
- CFB = Compensation Capacitance for CO.



## Bipolar Switcherd Current DAC <br> 

- Good device matching results in good DC performance
- Device scaling difficult, requires R-2R for higher resolution
- Typically higher power, can’t integrate Digital Signal Processing


## CMOS Switched Current DAC

- Scaling issues are simplified, no need for R-2R
- Allows Integration of Digital Signal Processing
- Good Device Matching for 12-bit linearity, calibration required for higher resolution
- Popular in Communications applications

Current Sources are
binarily weighted


## Terminating a Current Output DAC

Best AC performance

Best DC Performance


Compliance Voltage


Virtual Ground

## Architecture Pros and Cons

- Summary:
- Resistor String
- Inherent Monotonicity
- Compact Design Leading to the basis of Multi-Channel DACs
- Difficult to get High performance INL
- R-2R Ladder
- Good DC performance
- Suffer from distributed R-C effects and signal-dependant loading in frequency-domain applications
- Multiplying Capability
- Can Operate in Voltage Mode for Single Supply Applications


## Architecture Pros and Cons

## - Summary (con't):

- Bipolar Switched Current
- Suffers AC limitations because R-2R is typically required to create LSB currents
- CMOS Switched Current
- Best Choice for frequency-domain applications:
- No R-2R to limit AC performance
- Good matching for DC specifications (calibration sometimes needed)
- Allows for integration with discrete signal processing blocks to ease implementation and improve performance

