EM EXAMINATION FORMULA SHEET

- The surface area of a sphere of radius R is $4 \pi R^{2}$ and its volume is $\frac{4}{3} \pi R^{3}$.
- $\ln a-\ln b=\ln \frac{a}{b}$.
- $e^{i \theta}=\cos \theta+i \sin \theta$.
- Product rule: $\frac{d}{d x}(f(x) g(x))=\frac{d f(x)}{d x} g(x)+f(x) \frac{d g(x)}{d x}$.
- Chain rule: if $r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$, then

$$
\frac{\partial}{\partial x} f(r)=\frac{d f(r)}{d r} \frac{\partial r}{\partial x}
$$

- The unit vectors in the x, y and z directions are

$$
\vec{e}_{x}=(1,0,0), \quad \vec{e}_{y}=(0,1,0), \quad \vec{e}_{z}=(0,0,1)
$$

- A vector \vec{A} with components $\left(A_{x}, A_{y}, A_{z}\right)$ can be expressed in terms of the unit vectors \vec{e}_{x}, \vec{e}_{y} and \vec{e}_{z} as

$$
\vec{A}=A_{x} \vec{e}_{x}+A_{y} \vec{e}_{y}+A_{z} \vec{e}_{z}
$$

- $\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$.
- $\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \vec{e}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \vec{e}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \vec{e}_{z}$.
- The point with Cartesian coordinates (x, y, z) has a position vector

$$
\vec{r}=x \vec{e}_{x}+y \vec{e}_{y}+z \vec{e}_{z} .
$$

The length of the position vector is

$$
r=|\vec{r}|=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}} .
$$

- The unit vector in the radial direction is

$$
\vec{e}_{r}=\frac{\vec{r}}{r}
$$

- $\vec{\nabla}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$.
- The gradient of a scalar field $\phi(\vec{r})$ is the vector field

$$
\vec{\nabla} \phi(\vec{r})=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) .
$$

- The divergence of a vector field $\vec{A}(\vec{r})$ is the scalar field

$$
\vec{\nabla} \cdot \vec{A}(\vec{r})=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} .
$$

- The curl of a a vector field $\vec{A}(\vec{r})$ is the vector field

$$
\vec{\nabla} \times \vec{A}(\vec{r})=\left(\partial_{y} A_{z}-\partial_{z} A_{y}, \partial_{z} A_{x}-\partial_{x} A_{z}, \partial_{x} A_{y}-\partial_{y} A_{x}\right)
$$

$$
\phi(\vec{r}+d \vec{r})=\phi(\vec{r})+\vec{\nabla} \phi(\vec{r}) \cdot d \vec{r} .
$$

$$
\begin{aligned}
\vec{\nabla} \times \vec{\nabla} \phi(\vec{r}, t) & =0 \\
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A}(\vec{r}, t)) & =0
\end{aligned}
$$

- Line integrals: if Γ is a curve from \vec{r}_{1} to \vec{r}_{2}, then

$$
\int_{\Gamma} \vec{\nabla} \phi(\vec{r}) \cdot d \vec{\ell}=\phi\left(\vec{r}_{2}\right)-\phi\left(\vec{r}_{1}\right)
$$

- Stokes' theorem says that if S is any two-dimensional surface whose boundary is the closed curve Γ, then the circulation of a vector field $\vec{A}(\vec{r})$ around Γ is related to the flux of the curl of the vector field through the surface S :

$$
\oint_{\Gamma} \vec{A}(\vec{r}) \cdot d \vec{\ell}=\int_{S}(\vec{\nabla} \times \vec{A}(\vec{r})) \cdot d \vec{S}
$$

- Gauss's theorem relates the flux of a vector field through a closed two-dimensional surface S to the integral of the divergence of the vector field over the volume V enclosed by the surface:

$$
\oint_{S} \vec{A}(\vec{r}) \cdot d \vec{S}=\int_{V} \vec{\nabla} \cdot \vec{A}(\vec{r}) d^{3} \vec{r}
$$

- Gauss's law: if V is a volume enclosed by a closed surface S, then

$$
\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{S}=\frac{Q}{\epsilon_{0}}
$$

where Q is the charge in the volume V.

- Maxwell's equations in general:

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E}(\vec{r}, t) & =\frac{\rho(\vec{r}, t)}{\epsilon_{0}} \quad \text { (Gauss's law) } \\
\vec{\nabla} \times \vec{E}(\vec{r}, t) & =-\frac{\partial \vec{B}(\vec{r}, t)}{\partial t} \quad \text { (Faraday's law) } \\
\vec{\nabla} \cdot \vec{B}(\vec{r}, t) & =0 \\
\vec{\nabla} \times \vec{B}(\vec{r}, t) & =\frac{1}{c^{2}} \frac{\partial \vec{E}(\vec{r}, t)}{\partial t}+\frac{\vec{j}(\vec{r}, t)}{\epsilon_{0} c^{2}} \quad \text { (Ampere's law) }
\end{aligned}
$$

- Lorentz force:

$$
F=q \vec{E}+q \vec{v} \times \vec{B} .
$$

- Relation between electric potential energy $U(\vec{r})$ and electric potential $V(\vec{r})$ for a charge q :

$$
U(\vec{r})=q V(\vec{r}) .
$$

- The electric field due to a point charge q at the origin is

$$
\vec{E}(\vec{r})=\frac{q}{4 \pi \epsilon_{0} r^{2}} \vec{e}_{r},
$$

where $\vec{e}_{r}=\frac{\vec{r}}{r}$ is the unit vector in the radial direction.

- The electric potential due to a point charge q at the origin is

$$
V(\vec{r})=\frac{q}{4 \pi \epsilon_{0} r} .
$$

- Integral version of Gauss's law: if V is a volume enclosed by a closed surface S, then

$$
\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{S}=\frac{Q}{\epsilon_{0}},
$$

where Q is the charge in the volume V.

- The current I through a surface S is

$$
I=\int_{S} \vec{j}(\vec{r}) \cdot d \vec{S}
$$

where $\vec{j}(\vec{r})$ is the current density (current per unit cross-sectional area).

- Integral version of Ampere's law in magnetostatics: if S is a two dimensional surface with boundary Γ,

$$
\oint_{\Gamma} B(\vec{r}) \cdot d \vec{l}=\frac{I}{\epsilon_{0} c^{2}},
$$

where I is the current through the surface S.

- For static electric fields, the electric potential $V(\vec{r})$ and the electric field $\vec{E}(\vec{r})$ are related as follows:

$$
\vec{E}(\vec{r})=-\vec{\nabla} V(\vec{r}) .
$$

If Γ is any path from point \vec{r}_{1} to point \vec{r}_{2},

$$
V\left(\vec{r}_{2}\right)-V\left(\vec{r}_{1}\right)=-\int_{\Gamma} \vec{E}(\vec{r}) \cdot d \vec{\ell}
$$

- The vector potential is defined by

$$
\vec{B}(\vec{r}, t)=\vec{\nabla} \times \vec{A}(\vec{r}, t) .
$$

- Induced electromotive force (emf) in a circuit:

$$
\mathcal{E}=-\frac{d \Phi(t)}{d t}
$$

where $\Phi(t)$ is the magnetic flux through the circuit.

- Capacitance C : for a pair of conductors with charges $+Q$ and $-Q$ and with a potential difference ΔV, the capacitance C is defined by

$$
\Delta V=\frac{1}{C} Q
$$

The potential energy contained in the electric fields in a capacitor is

$$
U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C(\Delta V)^{2} .
$$

- Inductance L : for a circuit element with current I a magnetic flux Φ, the inductance L is defined by:

$$
\Phi=L I .
$$

The potential energy contained in the magnetic field in an inductor is

$$
U=\frac{1}{2} L I^{2} .
$$

The induced electromotive force (or "back emf") in an inductor is

$$
\mathcal{E}=-L \frac{d I(t)}{d t} .
$$

- The Poynting vector is

$$
\vec{S}(\vec{r}, t)=\epsilon_{0} c^{2} \vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t)
$$

Energy flows in the direction of \vec{S}, and $|\vec{S}|$ is the amount of energy per unit time (power) flowing per unit cross-sectional area.

- The impedance z of a circuit element is defined by

$$
z=\frac{\delta V(t)}{I(t)}
$$

where sinusoidally oscillating voltage sources and currents are expressed as complex exponentials.

- Impedances for circuit elements in an AC circuit with applied voltage $\Delta V=V_{0} e^{i \omega t}$:

$$
\begin{aligned}
z_{\text {resistor }} & =R \\
z_{\text {inductor }} & =i \omega L \\
z_{\text {capacitor }} & =\frac{1}{i \omega C}
\end{aligned}
$$

- $i=e^{i \frac{\pi}{2}}, \quad-i=e^{-i \frac{\pi}{2}}$
- For impedances in series,

$$
z_{\text {total }}=z_{1}+z_{2}+\cdots
$$

For impedances in parallel,

$$
\frac{1}{z_{\text {total }}}=\frac{1}{z_{1}}+\frac{1}{z_{2}}+\cdots
$$

