HEAT TRANSFER

Kotiba Hamad - Sungkyunkwan university

Problems

Problem 1

If inner and outer faces of a concrete wall with thickness of 20 cm is kept at a temperature $20^{\circ} \mathrm{C}$ and -5 C , respectively, and the thermal conductivity of the concrete is $1.2 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. Determine the heat loss through a wall 10 m long and 3 m high.

Problems

Problem 1

$>10 \mathrm{~m}$ long, 3 m high, and 0.2 m thick concrete wall.
$>$ Thermal conductivity of the concrete $(k)=1.2 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>$ Temperature of the inner surface $\left(T_{i}\right)=20^{\circ} \mathrm{C}$
$>$ Temperature of the outer surface $\left(\mathrm{T}_{0}\right)=-5^{\circ} \mathrm{C}$
$>$ One dimensional heat flow
$>$ The system has reached steady state.

Problems

Problem 1

$$
\begin{aligned}
& q=\frac{A K}{L}(\Delta T) \\
& q=\frac{(10 \mathrm{~m})(3 \mathrm{~m})(1.2 \mathrm{~W} /(\mathrm{m} \mathrm{~K}))}{0.2 \mathrm{~m}}\left(20^{\circ} \mathrm{C}-\left(-5^{\circ} \mathrm{C}\right)\right) \\
& q=4500 \mathrm{~W}
\end{aligned}
$$

Problems

Problem 2

A wall with 7.5 cm thickness (shown below) generates heat at the rate of $105 \mathrm{~W} / \mathrm{m}^{3}$. One side of the wall is insulated, and the other side is exposed to an environment at $90^{\circ} \mathrm{C}$. The convective heat transfer coefficient between the wall and the environment is $500 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Under one-dimensional-steady state conditions, and if the thermal conductivity of the wall is $12 \mathrm{~W} / \mathrm{m} . \mathrm{K}$, calculate the maximum temperature in the wall.

$T_{\infty}=90^{\circ} \mathrm{C}$

Problems

Problem 2

$>$ Plane wall with internal heat generation
$>$ Thickness $(L)=0.075 \mathrm{~m}$
$>$ Internal heat generation rate $\left(q_{G}\right)=105 \mathrm{~W} / \mathrm{m} 3$
$>$ One side is insulated
\Rightarrow Ambient temperature on the other side $(T)=90^{\circ} \mathrm{C}$
$>$ Convective heat transfer coefficient $\left(h_{c}\right)=500 \mathrm{~W} /(\mathrm{m} 2 \mathrm{~K})$
$>$ Thermal conductivity $(k)=12 \mathrm{~W} / \mathrm{m} . \mathrm{K}$.
$>$ The heat loss through the insulation is negligible.

$>$ The system has reached steady state.
$>$ One dimensional conduction through the wall.

Problems

Problem 2

The one dimensional conduction equation:

$$
k \frac{\partial^{2} T}{\partial x^{2}}+\dot{q}_{G}=\rho c \frac{\partial T}{\partial t}
$$

For steady state, $\frac{\partial T}{\partial t}=0$ therefore

$$
\begin{gathered}
k \frac{d^{2} T}{d x^{2}}+\dot{q}_{G}=0 \\
\frac{d^{2} T}{d x^{2}}=-\frac{\dot{q}_{G}}{k}
\end{gathered}
$$

To solve this equation, two boundary conditions are needed:

1. No energy loss through the insulator.
2. Convection at the other surface

Problems

Problem 2

1. No energy loss through the insulator.

Adiabatic or insulated surface
Insulated surface

$$
\begin{equation*}
\left.\frac{\partial T}{\partial x}\right|_{x=0}=0 \tag{2.33}
\end{equation*}
$$

2. Convection at the other surface

Fluid flow near to $-\left.k \frac{\partial T}{\partial x}\right|_{x=0}=h\left[T_{\infty}-T(0, t)\right]$

Problems

Problem 2

1. No energy loss through the insulator.

$$
\begin{array}{r}
\frac{d^{2} T}{d x^{2}}=-\frac{\dot{q}_{G}}{k} \\
\frac{d T}{d x}=\frac{d T}{k}=0 \text { at } x=0 \\
0=-\frac{\dot{q}_{G}}{k}(0)+C_{1} \Rightarrow C_{1}=0
\end{array}
$$

Integrating again

$$
T=-\frac{\dot{q}_{G}}{2 k} x^{2}+C_{2}
$$

Problems

Problem 2

2. Convection at the other surface

$$
\begin{aligned}
& T=-\frac{q_{G}}{2 k} x^{2}+C_{2} \\
& -k \frac{d / T}{d x}=h_{c}\left(T-T_{\infty}\right) \quad \text { at } \quad x=L \\
& -k\left(\frac{\dot{q}_{G} L}{k}\right)=h_{c}\left(-\frac{\dot{q}_{G} L^{2}}{2 k}+C_{2}-T_{\infty}\right) \Rightarrow C_{2}=\dot{q}_{G} L\left(\frac{1}{h_{c}}+\frac{L}{2 k}\right)+T_{\infty}
\end{aligned}
$$

Problems

Problem 2

Substituting this into the expression for T yields the temperature distribution in the wall:

$$
\begin{aligned}
& T(x)=\frac{\dot{q}_{G}}{2 k} x^{2}+\dot{q}_{G} L\left(\frac{1}{\overline{h_{c}}}+\frac{L}{2 k}\right)+T_{\infty} \\
& T(x)=T_{\infty}+\frac{\dot{q}_{G}}{2 k}\left(L^{2}+\frac{2 k L}{\overline{h_{c}}}-x^{2}\right)
\end{aligned}
$$

The maximum temperature occurs at $x=0$.

$$
\begin{gathered}
T_{\max }=T_{\infty}+\frac{\dot{q}_{G}}{2 k}\left(L^{2}+\frac{2 k L}{\overline{h_{c}}}\right) \\
T_{\max }=90^{\circ} \mathrm{C}+\frac{10^{5} \mathrm{~W} / \mathrm{m}^{3}}{2[12 \mathrm{~W} /(\mathrm{mK})]}\left((0.075 \mathrm{~m})^{2}+\frac{2[12 \mathrm{~W} /(\mathrm{mK})](0.075 \mathrm{~m})}{500 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)}\right)=128^{\circ} \mathrm{C}
\end{gathered}
$$

Problems

Problem 3

A composite wall (shown below) has uniform temperatures. If the thermal conductivities of the wall materials are: $k_{A}=70 \mathrm{~W} / \mathrm{m} . \mathrm{K}, k_{B}=60 \mathrm{~W} / \mathrm{m} . \mathrm{K}, k_{C}=40 \mathrm{~W} / \mathrm{m}$. K , and $k_{D}=20 \mathrm{~W} / \mathrm{m} . \mathrm{K}$, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. (Surfaces normal to heat transfer direction are isothermal).

Problems

Problem 3

$>$ A section of a composite wall
$>$ Thermal conductivities
$\Rightarrow k_{A}=70 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$\Rightarrow k_{B}=60 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>k_{C}=40 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>k_{D}=20 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>$ Surface temperatures
\Rightarrow Left side $\left(T_{A s}\right)=200^{\circ} \mathrm{C}$
\Rightarrow Right side $\left(T_{D s}\right)=50^{\circ} \mathrm{C}$
$>$ One dimensional conduction

> The system is in steady state
$>$ The contact resistances between the materials is negligible

Problems

Problem 3

Problems

Problem 3

The total thermal resistance is

$$
\begin{aligned}
& R_{\text {total }}=R_{A}+\frac{R_{B} R_{C}}{R_{B}+R_{C}}+R_{D} \\
& R_{\text {total }}=0.0794+\frac{(0.2315)(0.3472)}{0.2315+0.3472}+0.5556 \mathrm{~K} / \mathrm{W} \\
& R_{\text {total }}=0.7738 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

The total rate of heat transfer through the composite wall is given by

$$
q=\frac{\Delta T}{R_{\text {total }}}=\frac{200^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}}{0.7738 \mathrm{~K} / \mathrm{W}}=194 \mathrm{~W}
$$

Problems

Problem 3

The average temperature at the interface between material A and materials B and C $\left(T_{A B C}\right)$ can be determined by considering the conduction through material A alone.

$$
\begin{gathered}
q_{k a}=\frac{T_{A s}-T_{A B C}}{R_{A}}=q \\
T_{A B C}=T_{A s}-q R_{A}=200^{\circ} \mathrm{C}-(194 \mathrm{~W})(0.0794 \mathrm{~K} / \mathrm{W})=185^{\circ} \mathrm{C}
\end{gathered}
$$

Problems

Problem 3

The average temperature at the interface between material D and materials B and C $\left(T_{B C D}\right)$ can be determined by considering the conduction through material D alone

$$
\begin{gathered}
q_{k D}=\frac{T_{B C D}-T_{D s}}{R_{D}}=q \\
T_{B C D}=T_{D s}+q R_{D}=50^{\circ} \mathrm{C}+(194 \mathrm{~W})(0.5556 \mathrm{~K} / \mathrm{W})=158^{\circ} \mathrm{C}
\end{gathered}
$$

Problems

Problem 4

A composite wall (shown below) has uniform temperatures. If the thermal conductivities of the wall materials are: $k_{A}=70 \mathrm{~W} / \mathrm{m} . \mathrm{K}, k_{B}=60 \mathrm{~W} / \mathrm{m} . \mathrm{K}, k_{C}=40 \mathrm{~W} / \mathrm{m}$. K , and $k_{D}=20 \mathrm{~W} / \mathrm{m} . \mathrm{K}$, and contact resistance at each interface $\boldsymbol{R}_{i}=0.1 \mathrm{~K} / \mathrm{W}$, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. (Surfaces normal to heat transfer direction are isothermal).

Problems

Problem 4

$>$ A section of a composite wall
$>$ Thermal conductivities
$\Rightarrow k_{A}=70 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$\Rightarrow k_{B}=60 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>k_{C}=40 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>k_{D}=20 \mathrm{~W} / \mathrm{m} . \mathrm{K}$
$>$ Surface temperatures
\Rightarrow Left side $\left(T_{A s}\right)=200^{\circ} \mathrm{C}$
\Rightarrow Right side $\left(T_{D s}\right)=50^{\circ} \mathrm{C}$
$>$ One dimensional conduction

> The system is in steady state
$>$ Contact resistance at each interface $\left(\boldsymbol{R}_{i}\right)=0.1 \mathrm{~K} / \mathrm{W}$

Problems

Problem 4

Problems

Problem 4

(a) The total resistance for this system is

$$
\begin{aligned}
& R_{\text {total }}=R_{A}+R_{i}+\frac{R_{B} R_{C}}{R_{B}+R_{C}}+R_{i}+R_{D} \\
& R_{\text {total }}=0.0794+0.1+\frac{(0.2315)(0.3472)}{0.2315+0.3472}+0.1+0.5556 \mathrm{~K} / \mathrm{W} \\
& R_{\text {total }}=0.9738 \mathrm{~K} / \mathrm{W}
\end{aligned}
$$

The total rate of heat transfer through the composite wall is given by:

$$
q=\frac{\Delta T}{R_{\text {total }}}=\frac{200^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}}{0.9738 \mathrm{~K} / \mathrm{W}}=154 \mathrm{~W}
$$

Problems

Problem 4

(b) The average temperature on the A side of the interface between material A and material B and $C\left(T_{1 A}\right)$ can be determined by considering the conduction through material A alone.

$$
\begin{gathered}
q=\frac{T_{A s}-T_{1 A}}{R_{A}} \\
T_{1 A}=T_{A s}-q R_{A}=200^{\circ} \mathrm{C}-(154 \mathrm{~W})(0.0794 \mathrm{~K} / \mathrm{W})=188^{\circ} \mathrm{C}
\end{gathered}
$$

The average temperature on the B and C side of the interface between material A and materials B and $C\left(\mathrm{~T}_{1 B C}\right)$ can be determined by considering the heat transfer through the contact resistance.

$$
\begin{gathered}
q=\frac{T_{1 A}-T_{1 B C}}{R_{i}} \\
T_{1 B C}=T_{1 A}-q R_{i}=188^{\circ} \mathrm{C}-(154 \mathrm{~W})(0.1 \mathrm{~K} / \mathrm{W})=172^{\circ} \mathrm{C}
\end{gathered}
$$

Problems

Problem 4

The average temperature on the D side of the interface between material D and materials B and $C\left(T_{2 D}\right)$ can be determined by considering the conduction through material D alone.

$$
\begin{gathered}
q=\frac{T_{2 D}-T_{D s}}{R_{D}} \\
T_{2 D}=T_{D s}+q R_{D}=50^{\circ} \mathrm{C}+(154 \mathrm{~W})(0.5556 \mathrm{~K} / \mathrm{W})=136^{\circ} \mathrm{C}
\end{gathered}
$$

The average temperature on the B and C side of the interface between material D and materials B and $C\left(T_{2 B C}\right)$ can be determined by considering the heat transfer through the contact resistance.

$$
\begin{gathered}
q=\frac{T_{2 B C}-T_{2 D}}{R_{i}} \\
T_{2 B C}=T_{2 D}+q R_{i}=136^{\circ} \mathrm{C}+(154 \mathrm{~W})(0.1 \mathrm{~K} / \mathrm{W})=151^{\circ} \mathrm{C}
\end{gathered}
$$

