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@nerators can also be used to drive currents around circuits (in which case mechanical
energy is converted to work done moving the charges around the circuit). Generators
establish an EMF by a process called induction. In fact, most the electricity available
via the electric grid is generated by the process of induction.

7.2 Induced currents

It was established experimentally in the first half of the 1800’s that there is an intimate
link between electricity and magnetism. The first major discovery, In 1820 by the Danish
scientist Hans Christian Oersted, occurred when he demonstrated that current-carrying
wires produce magnetic fields. This was expressed mathematically by Maxwell in the
equation V x B(F) = Z:ég The magnetic field “curls” around the current.

A second major discovery, made in the same year by the French scientist André Marie
Ampeére, was that wires carrying a current experience a force in a magnetic field. This
is a manifestation of the Lorentz force law F = q¥ x B, and is not described by one of
Maxwell’s equations.

To see how this works, suppose we have a wire with cross-sectional area A carrying a
current I. Suppose the current is made up of particles of charge g travelling with velocity
v parallel to the wire, and that there are N of these charged particles per unit volume.
We can determine the force on an element df of the wire using the Lorentz force law:
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dF = (NAdY) q% x B,

where N A df is the number of charges in the element of wire. But since the velocity o' of
the charges is parallel to d@: we can write this as

dF = (NAq'u)d[x B.
We will show this is equivalent to
dF = 1di x B.
The current is the amount of charge passing a given point per unit time, which clearly

depends on v. In time dt, all of the charge within a distance dz = v dt will pass through
the end of the element of wire, and that charge is NAdz = NAvdt :
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So the amount of charged/pé unit time, or the current, passing through the end of the
element of wire is I = H—AdT”i‘-ll’ = NAw. This completes the proof that the force on the -

element of wire is
dF = Idl x B. e,

To determine the force on a finite wire, we would integrate this @long the whole wrre:
F=1I / df' x B(7).

Note that this depends only on the total current, and not on the charges g of the individual

particles making up the current.

With the discovery that electric currents produce magnetic fields and are subject to
forces in magnetic fields, people began to wonder if magnetic fields could produce electric
currents. It was the English scientist Michael Faraday who proved experimentally that
this was indeed the case, but only when something was changing (or time dependent).
Faraday showed that if a wire is moving in a stationary magnetic field, a current is induced
in the wire; and if a stationary wire is placed in a changing magnetic field, then a current
is also induced in the wire - the changing magnetic field can be produced by moving a
magnet, or by varying the current in a wire (therefore varying the magnetic field produced
by the wire.

The fact that a wire moving in a stationary magnetic field can induce a current can
easily be understood using the Lorentz force law, as illustrated in the example below:
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However, the fact that a changing magnetic field can induce a current in a stationary
wire is a new phenomenon, and required the introduction of the Maxwell equation
dB(7,t)

at )

aptly known as Faraday’s law. In the case of electrostatics and magnetostatics (no moving

V x E(Ft) = —

charges or changing magnetic fields), it becomes V x E(7,t) = 0.
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7.3 The induced EMF due to a wire moving through a static

magnetic field

Even though we are considering a static magnetic field, we have moving charges (the
charges in the wire are moving as the wire moves). Consider the situation shown in
the diagram below: The force on a charge g in the moving portion of the wire is the
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Lorentz force F' = qu X B (there is no force due to the magnetic field on the charges
in the stationary parts of the wire). In the case of the geometry shown, this force is of
magnitude guB and points downwards, and so will set up a current I in the direction
shown. Recalling that the EMF is the work per unit charge done by the force, and that
the force actions only in the moving portion of the wire,

8=%/ﬁ-d§=vB€.

But the speed of the wire is v = %, S0
dL
&= Tit—Be
d
=7 (BLY)
d

where A is the area enclosed by the current loop. But since B is perpendicular to the
current loop, B A is just the flux [ B'(F) - dS of the magnetic field through the loop. So:

induced EMF £ = %(magnetic flux through the current loop).

Though proven only for a particular geometry above, this is a general result.

Note that the direction of the induced current is such that the magnetic field it pro-
duces gives a change in the magnetic flux through the loop that opposes the change in the
magnetic flux through the loop due to the motion of the wire - it introduces a flux in the
opposite direction. This is known as Lenz’s law, and allows us to easily deduce the
direction of the induced EMF. The direction of the induced EMF by changing magnetic
flus through a loop is always such that the magnetic field produced by the induced current
opposes the change in magnetic fluz - nature “resists” the changing fluz.
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7.4 Stationary circuit, changing magnetic field

In this case, the induced EMF cannot be explained or computed using an argument based
on the Lorentz force law. This is a new physical principle. It was Faraday who discovered
experimentally that if the magnetic field in a region of space is changing with time, then
electric fields are induced in that region of space. If a wire is present, it is this electric field
which provides a force on the charges to induce a current. However, even in the absence
of a wire, the electric fields is produced - this is very important for the phenomenon of
electromagnetic waves. Maxwell showed that Faraday’s results could be summarised in
the vector equation
dB(F,t)
-
which is known and Faraday’s law. The electric field induced by a time varying magnetic

V x E(Ft) =

field is given on the left-hand side of the equation (recall that in magnetostatics, the right
hand side is zero, as we only consider static magnetic fields, in which case V x E(7) = 0).

If we have a closed loop of wire, let " denote the closed path it determines. The EMF
induced by the electric field produced by the changing magnetic field is

£=¢ B dl

iy

If S is any two dimensional surface whose boundary is I', Gauss’s law tells us
€=/S(§><E")-d5".

Using Faraday’s law, this becomes

Al % /S B-dS = —%(magnetic flux through S).

Note that the minus sign in this expression relates to Lenz’s law: if dS are chosen to
point out of the page; then the loop T is counter-clockwise (by the right hand rule). If
the magnetic field also points out of the page and is increasing, then the induced current
is clockwise. Again, the direction of the induced current is such that the magnetic field it
produces opposes the change in the flux through the loop - it gives a flux in the opposite

direction.
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So, in both the case of a wire moving through a static magnetic field, and a static
wire in the presence of a changing magnetic field, the same result applies for the induced
EMF:

€| = [%(magnetic flux through circuit)|,

with the direction of the induced EMF determined by Lenz’s law. In the former case, we
can explain the result using the Lorentz force law with no need to use Maxwell’s equations;
in the latter case, we have to introduce a new term into one the Maxwell equations that
we used for electrostatics and magnetostatics, namely

dB(7,1)
"
There is no apparent explanation as to why the induced EMF is given by the same formula

VxEFR=0 = VxE®Ft-=

in both cases. This “coincidence” was one of the puzzles that ultimately led Einstein to
the Special Theory of Relativity (where we can find an explanation).

7.5 Completing Ampere’s law - the “displacement current”

Up until now, we have been using a version of Ampere’s law applicable to magnetostatics
(time-independent charge and current densities which means time-independent electric

and magnetic fields):
— —_ 1 -
V x B(r) = —3(7).
() 6002](_7
However, once we introduce time dependence, an additional term called the “displacement

current” must be included in Ampere’s law.

To understand why we need to modify Ampere’s law, let’s go back an reconsider an
analysis we did earlier. We considered a closed surface S enclosing a volume V. The net
flow of current through the closed surface S is

fg i@ -dS = e %9 (V x B(7))-dS (using Ampere's law)

= /V d&*7V - (V x B(F)) (using Gauss’s law)
=0

as a result of the vector identity V - (V x V(7)) for any vector field V(7). The fact
that the net flow of current through any closed surface S is zero is consistent with the
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