ELECTROMAGNETISM - PROBLEM SET 4

Problem sets are not for assessment.

- 1. If a point charge q is located at $\vec{r}_1 = (a,0,0)$ and a point charge -2q is located at $\vec{r}_2 = (0,b,0)$, calculate the electric potential $V(\vec{r})$, where $\vec{r} = (0,0,c)$.
- 2. If the electric potential in a region of space is $V(\vec{r}) = \alpha z \beta xy$, where α and β are constants, compute the electric field $\vec{E}(\vec{r})$.
- 3. For the scalar field $\phi(\vec{r}) = x^3 + y^3 + z^3$, compute the gradient $\vec{\nabla}\phi(\vec{r})$.
- 4. For the vector field $\vec{A}(\vec{r}) = xz \, \vec{e}_x + z \, \vec{e}_y xy \, \vec{e}_z$, compute the divergence $\vec{\nabla} \cdot \vec{A}(\vec{r})$.
- 5. For the vector field $\vec{A}(\vec{r}) = xz \, \vec{e}_x + z \, \vec{e}_y xy \, \vec{e}_z$, compute the curl $\vec{\nabla} \times \vec{A}(\vec{r})$.