ELECTROMAGNETISM - PROBLEM SET 4

Problem sets are not for assessment.

1. If a point charge q is located at $\vec{r}_{1}=(a, 0,0)$ and a point charge $-2 q$ is located at $\vec{r}_{2}=(0, b, 0)$, calculate the electric potential $V(\vec{r})$, where $\vec{r}=(0,0, c)$.
2. If the electric potential in a region of space is $V(\vec{r})=\alpha z-\beta x y$, where α and β are constants, compute the electric field $\vec{E}(\vec{r})$.
3. For the scalar field $\phi(\vec{r})=x^{3}+y^{3}+z^{3}$, compute the gradient $\vec{\nabla} \phi(\vec{r})$.
4. For the vector field $\vec{A}(\vec{r})=x z \vec{e}_{x}+z \vec{e}_{y}-x y \vec{e}_{z}$, compute the divergence $\vec{\nabla} \cdot \vec{A}(\vec{r})$.
5. For the vector field $\vec{A}(\vec{r})=x z \vec{e}_{x}+z \vec{e}_{y}-x y \vec{e}_{z}$, compute the curl $\vec{\nabla} \times \vec{A}(\vec{r})$.
