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One-Dimensional, Steady-State Conduction 

 Conduction problems may involve multiple directions and time-dependent 

conditions 

 Inherently complex-difficult to determine temperature distributions. 

 In a one-dimensional system, temperature gradients exist along only a single 

coordinate direction, and heat transfer (diffusion) occurs exclusively in that 

direction.  

 In steady-state conditions, the temperature at each point is independent of 

time. 

 First, the heat transfer under this conditions will be discussed considering 

that there is no heat generation.   

The heat resistance will be introduced.  
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Methodology of a conduction analysis 
 

 
1. Specify appropriate form of the heat equation 

2. Solve for the temperature distribution 

3. Apply Fourier’s law to determine the heat flux 

Simplest case: 

One-dimensional, steady state conduction with no thermal energy generation 

Common geometries: 

 The plane wall: described in rectangular (x) coordinate. Area 

perpendicular to direction of heat transfer is constant (independent of 

x). 

 Cylindrical wall: radial conduction through tube wall. 

  Spherical wall: radial conduction through shell wall. 
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Methodology of a conduction analysis 
 

 
Common geometries 
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1. The Plane Wall 
Case e of 3-dimensional  
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1. The Plane Wall 
Using the following equation: 

 

 

 

 

Considering: (I) no heat generation, (II) steady-

state conditions and (Ii) one-dimensional flow:  

 

 

 

 

For constant k and A, this equation will be a 

second order differential equation: 
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1. The Plane Wall 
1-D heat conduction equation for steady-state 

conditions and no internal heat generation (i.e.  q = 

0), is 

 

 

 

 

 

 

The general solution of the equation is:  

 

 

 

 

 

Where C1 and C1, are constants which can be 

found from the boundary conditions of the 

system.  

This mean: 

Heat flux (q”x) is independent of x 

Heat rate (qx) is independent of x 

for constant k and A 
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1. The Plane Wall 
Boundary conditions  

In this system, first kind boundaries were used   

For boundary conditions: T(0) = Ts,1 and T(L) = Ts,2  

at x = 0, T(x) = Ts,1 and C2 = Ts,1  

at x = L, T(x) = Ts,2 and Ts,2 = C1 L + C2  = C1 L + Ts,1 

this gives, C1 = (Ts,2 – Ts,1)/2 

Using value of C1 and C2, the function of T(x) is 

From here, apply Fourier’s 

law to get heat transfer.  
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1. The Plane Wall 

Heat rate for plane wall: 

Heat flux for plane wall: 
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1. The Plane Wall 

Heat rate for plane wall: 

Heat flux for plane wall: 
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2. Thermal Resistance 

Just like the electrical conductivity and electrical resistivity, the thermal 

conductivity and thermal resistivity are related to each other: 

 

  

 

 

 

 By the same way, the heat transfer rate equation can be written as:     

 

 Recall electric circuit theory - Ohm’s law for electrical resistance: 

Resistance

e DifferencPotential
current Electric 
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2. Thermal Resistance 

Just like the electrical conductivity and electrical resistivity, the thermal 

conductivity and thermal resistivity are related to each other:  
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2. Thermal Resistance 

Considering the convection heat transfer at the 

surface: 

 

 

 

 In this regard, the modelling of heat resistance 

using circuit representations will be needed to 

include both modes. 

 The equivalent thermal circuit for the plane 

wall with convection surface conditions is 

shown here:  

 Since qx is constant throughout the system:   
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2. Thermal Resistance 

We can use this electrical analogy to represent heat transfer problems using the 

concept of a thermal circuit (equivalent to an electrical circuit). 

 

 

 

 

 

 

 

The conduction and convection resistances are in series and can be summed 
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3. The Composite Wall 

The thermal circuits for more complex 

systems, such as composite walls, in 

which various layers can be included in 

the wall. 

 For the wall shown here, the 

following equation can be used to 

introduce the heat transfer rate:       

 

 

 

  where T,1-T,4 is the overall temperature 

difference.  
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3. The Composite Wall 

For this wall, the overall heat transfer coefficient  U is used:  
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3. The Composite Wall 
Series-parallel type  

1. Surfaces normal to the 

x-direction are isothermal 

2. Surfaces parallel to the 

x-direction are adiabatic 
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4. Contact Resistance 
 Although neglected until now, it is important to recognize that, in composite 

systems, the temperature drop across the interface between materials may be 

appreciable. 

 This temperature change is attributed to what is known as the thermal 

contact resistance, Rt,c. 

q"X = q”gap + q”cont  
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One-Dimensional, Steady-State Conduction 
4. Contact Resistance 
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5. Porous Media 
In many applications, heat transfer occurs within porous media that are 

combinations of a stationary solid and a fluid.  
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5. Porous Media 
Consider a saturated porous medium that is subjected to surface temperatures 

T1 at x = 0 and T2 at x = L. After steady-state conditions are reached and if T1  

T2, the heat rate may be expressed as: 
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5. Porous Media 
Heat rate may be expressed as 

 

 

where keff is an effective thermal conductivity of the porous system. 

 

 This equation is valid when there is no radiation heat transfer.   

This is valid for porosity less than 25% 
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1. The Plane Wall 

Example-1 
 Heat loss from the skin surface is (I) 146 W (air) and (II) 1320 W (water).   

 Calculate the thickness of the insulator  needed to reduce the heat transfer 

rate from this skin to 100 W in both cases (air and water).   
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1. The Plane Wall 

Example-1 
 To solve this problem, first the heat transfer modes, by which the heat from 

the skin is lost, should be introduced.  

 Total resistance concept should be used.  
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1. The Plane Wall 

Example-1 

 Steady-state conditions. 

 

 One-dimensional heat transfer by conduction through the 

skin/fat and insulation layers. 

 

 Contact resistance is negligible. 

 

 Radiation exchange between the skin surface and the 

surroundings is between a small surface and a large enclosure 

at the air temperature. 

 

 Liquid water is opaque to thermal radiation. 
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1. The Plane Wall 

Example-1 



One-Dimensional, Steady-State Conduction 
1. The Plane Wall 

Example-1 

Air 
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1. The Plane Wall 

Example-1 

Water 
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1. The Plane Wall 

Example-1 

The skin surface temperature can be calculated by considering conduction 

through the skin/fat layer: 


