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One-Dimensional, Steady-State Conduction

» Conduction problems may involve multiple directions and time-dependent
conditions

> Inherently complex-difficult to determine temperature distributions.

» In a one-dimensional system, temperature gradients exist along only a single
coordinate direction, and heat transfer (diffusion) occurs exclusively in that
direction.

» In steady-state conditions, the temperature at each point is independent of
time.

» First, the heat transfer under this conditions will be discussed considering
that there is no heat generation.

» The heat resistance will be introduced.



One-Dimensional, Steady-State Conduction

Methodology of a conduction analysis
1. Specify appropriate form of the heat equation
2. Solve for the temperature distribution
3. Apply Fourier’s law to determine the heat flux

Simplest case:
One-dimensional, steady state conduction with no thermal energy generation

Common geometries:

% The plane wall: described in rectangular (x) coordinate. Area
perpendicular to direction of heat transfer is constant (independent of

X).

% Cylindrical wall: radial conduction through tube wall.

/

¢ Spherical wall: radial conduction through shell wall.



One-Dimensional, Steady-State Conduction

Methodology of a conduction analysis

Common geometries




One-Dimensional, Steady-State Conduction

1. The Plane Wall
Case e of 3-dimensior=l
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One-Dimensional, Steady-State Conduction

1. The Plane Wall
Using the following equation:

Tw,l_\
Sk 4 2 () 2 (k7T) 440

ax\ dx ay\"ay] az\" 9z \
T,
Considering: (I) no heat generation, (1) steady- \ -
state conditions and (1i) one-dimensional flow: T T W i,
() T,
dx \ dx x x=L
Cold fluid
T, 5 hy

For constant k and A, this equation will be a @

second order differential equation: . PP A
' 1 L L
a’QT o A kA T,A
ﬁf‘.’z =0 FICURE 3.1 Heat transfer through a

plane wall. (@) Temperature distribution.
(b) Equivalent thermal circuit.



One-Dimensional, Steady-State Conduction

1. The Plane Wall

1-D heat conduction equation for steady-state

conditions and no internal heat generation (i.e. q = T—\
T,

0), is 5 2
aT _0 for constant k and A | \
e L2
This mean: N

Heat flux (¢ ) is independent of x T T T e
Heat rate (q,) is independent of x Hot
Tm,lrhl
e Lo

Cold fluid
T. o by

The general solution of the equation is:

T(x) = ”dexdx j(—+q)dx

T.. T, T T.»

e~
=
o=

..T(I):Cl'x'l‘CQ h A

Where C1 and C1, are constants which can be
found from the boundary conditions of the
system.




One-Dimensional, Steady-State Conduction

1. The Plane Wall

Boundary conditions
In this system, first kind boundaries were used

1. Constant surface temperature T

Ice bath or heat sink 10,0 =T, (2.31)

For boundary conditions: T(0) = T, and T(L) =T,
atx=0,T(x)=T,;and C, =T,
atx=L,T(x)=T,,and T;,=C, L+C, =C, L+ T,
this gives, C; = (T;,— T 1)/2

Using value of C, and C,, the function of T(x) is

_ X ey From here, apply Fourier’s
I(x) = (T;, — Ty,) 7 + T, » dT L2415

v = 7 law to get heat transfer.




One-Dimensional, Steady-State Conduction
1. The Plane Wall

Heat flux for plane wall:

; dT k&
qx = _kE: E(Ts,l _Ts,z)
Heat rate for plane wall:
dT kA
= —kd—=—(T,,-T
x dx L ( 5.1 §.2 ) Cold fluid

T onhy

T.1 T, T T.»

(b)



One-Dimensional, Steady-State Conduction
1. The Plane Wall

Heat flux for plane wall:

g=L=kq 1)

A L
Heat rate for plane wall: -
_ a4l _KA o R Lo
9= dx N L ( sl 3’2) _ Cold fluid
(@) Tzt

1 L 1
hA kA hoA



One-Dimensional, Steady-State Conduction

2. Thermal Resistance

Just like the electrical conductivity and electrical resistivity, the thermal
conductivity and thermal resistivity are related to each other:

» Recall electric circuit theory - Ohm’s law for electrical resistance:

Potential Difference
Resistance

Electric current =

> By the same way, the heat transfer rate equation can be written as:

., c:;T - . )
. k L/kA



One-Dimensional, Steady-State Conduction

2. Thermal Resistance

Just like the electrical conductivity and electrical resistivity, the thermal
conductivity and thermal resistivity are related to each other:

Variable resistor m/surface area
NTV p=—01 of current flow
1 .\current flow
Ammeter C/)I —=— Battery ath Ien th
L
—— , enene
— S o= r L
Cross-sectional 74 Specimen p e —
area, A @ a A
Voltmeter
R L L . Ts,l TS,2
t,cond — —



One-Dimensional, Steady-State Conduction

2. Thermal Resistance
Considering the convection heat transfer at the

surface: -
— Too 1 T
hA(T, — T —
q = ( ) » t conv — q hA \

» In this regard, the modelling of heat resistance T T T
using circuit representations will be needed to

. Hot fluid
include both modes. L L
- - - X x=L
» The equivalent thermal circuit for the plane -
wall with convection surface conditions is 23
. T.1 T T» T.»
sr_lown hgre. WY A AN
» Since g, is constant throughout the system: Ra o A

Too,l o Ts,l o TS,] o Ts,z o Ts,z o Tm,z
T nA T T LIkA 1A




One-Dimensional, Steady-State Conduction

2. Thermal Resistance

We can use this electrical analogy to represent heat transfer problems using the
concept of a thermal circuit (equivalent to an electrical circuit).

_ Overall Driving Force AT

overall

T = Resistance - Z R

]

. Tﬂo,l _ TS,l . TS,] _ T.S‘,2 TS,Z - TOO,Z »q _ TOO.,] o TOO,Q.
T UnA T T LIkA . UhA ! R

The conduction and convection resistances are in series and can be summed

T.1 T T, T.o 1 L 1
BV : , Roy=— 4"+
o Ve VWV “ A KA hA

1

A ; A



One-Dimensional, Steady-State Conduction

3. The Composite Wall
The thermal circuits for more complex - T\\

51
TZ

systems, such as composite walls, in
which various layers can be included in

the wall. e

» For the wall shown here, the T T T |
following equation can be used to i
T

introduce the heat transfer rate: b k| K
A B i

ot 1

qx N | | \_.I Cold fluid

2R, 1 L L L1 T g hy

hA kpA kgA koA hyA

where T_,-T_, IS the overall temperature _ . o s oA -oAA—oAN—AM—o
’ 1 A Tl T;,l TZ T.‘S T;,zl Tm‘4

difference. =

FIGURE 3.2 Equivalent thermal circuit for a series composite wall.



One-Dimensional, Steady-State Conduction
3. The Composite Wall

Tm,l B Tm,4
C[(1/hA) 4 (LalkrA) + (LglkgA) + (LolkcA) + (1/h,A)]

qx

For this wall, the overall heat transfer coefficient U is used:

_ 1 _ 1
VS RaA (U + (Ll + (Llhg) + (Lelko) + (/i)




One-Dimensional, Steady-State Conduction

3. The Composite Wall
Series-parallel type

d—lf—P‘—LF=LG—hq—LH—b/}i‘ja’A
ke F
T, T,
ke L2 ki
E G H

1. Surfaces normal to the
x-direction are isothermal

2. Surfaces parallel to the
X-direction are adiabatic




One-Dimensional, Steady-State Conduction

4. Contact Resistance

» Although neglected until now, it is important to recognize that, in composite
systems, the temperature drop across the interface between materials may be
appreciable.

» This temperature change is attributed to what is known as the thermal
contact resistance, R, .

Th—Tp
q,

"o
Rt,c o

LI » »
q x—4q gap+q cont

Ficure 3.4 Temperature drop due to
thermal contact resistance.




One-Dimensional, Steady-State Conduction

4. Contact Resistance

TABLE 3.1 Thermal contact resistance for (a) metallic interfaces
under vacuum conditions and (b) aluminum interface (10-pm
surface roughness, 10° N/m?) with different interfacial fluids [1]

Thermal Resistance, R} . X 10* (m*- K/W)

(@) Vacuum Interface (&) Interfacial Fluid
Contact pressure 100 kN/m’ 10,000 kN/m* Air 2.75
Stainless steel 6-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5-3.5 0.2-04 Silicone oil 0.525

Aluminum 1.5-5.0 0.2-04 Glycerine 0.265




One-Dimensional, Steady-State Conduction

4. Contact Resistance

TABLE 3.2  Thermal resistance of representative solid/solid interfaces

Interface R{ X 10* (m?-K/W) Source
Silicon chip/lapped aluminum in air 0.3-0.6 [2]
(27-500 kN/m?)

Aluminum/aluminum with indium foil ~0.07 [1, 3]
filler (~100 kN/m?)

Stainless/stainless with indium foil ~0.04 [1, 3]
filler (~3500 kN/m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1 [4]
coating

Aluminum/aluminum with Dow Corning ~0.07 [1, 3]
340 grease (~100 kN/m?)

Stainless/stainless with Dow Corning ~(.04 [1, 3]
340 grease (~3500 kN/m?)

Silicon chip/aluminum with 0.02-mm 0.2-0.9 [5]
epoxy

Brass/brass with 15-pm tin solder 0.025-0.14 6]




One-Dimensional, Steady-State Conduction

5. Porous Media
In many applications, heat transfer occurs within porous media that are
combinations of a stationary solid and a fluid.

Photographs of (a) Scanning Electron Microscope (SEM) image showing

the cross section of carbon foam, and (b) an aluminum foam consisting of

interconnected ligaments



One-Dimensional, Steady-State Conduction

5. Porous Media

Consider a saturated porous medium that is subjected to surface temperatures

T, atx =0 and T, at x = L. After steady-state conditions are reached and if T,
T,, the heat rate may be expressed as:

— =L l—
L, oo
RIS Area A R e O i
T, _ & & ko ko ke T

7:"'_'___ T2

Loy
—> o AAA—

¢

ke
(a) (b) (c) kA

FicUure 3.5 A porous medium. (a) The medium and its properties. (b) Series thermal resistance
representation. (c) Parallel resistance representation.



One-Dimensional, Steady-State Conduction

5. Porous Media
Heat rate may be expressed as

keffA
L
where K IS an effective thermal conductivity of the porous system.

QI - (Tl o TZ)

» This equation is valid when there is no radiation heat transfer.

S
1 - )
SRR Area A
. Y | . AAT
(I —&)Llk;+ eLlk; v — kot (] —
. effmax — €K+ (1 — &)k,
. kg, = 1
(= o)k, + elk; ‘ lL ) k;+ 2k, — 2e(k, — k)
. R, kﬁ:l:kf—lers—lrs(ks—kf)]s
Ny g o L ol -
A EA {d oA This is valid for porosity less than 25%




One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-1
» Heat loss from the skin surface is (I) 146 W (air) and (I1) 1320 W (water).

» Calculate the thickness of the insulator needed to reduce the heat transfer
rate from this skin to 100 W in both cases (air and water).

h,=5.9W/m*-K

]""_ = 35°C L '_T; —e=095

Skin/fat Insulation
= 0.3 Wik —— k. =0.014 Wim-K
¢ = 0. mK ———

T, =10°C—f

T.=10°C
h =2 WimZK (Air)
T T T h = 200 W/m2-K (Water)

Air or
water



One-Dimensional, Steady-State Conduction

1. The Plane Wall

Example-1

» To solve this problem, first the heat transfer modes, by which the heat from
the skin is lost, should be introduced.

» Total resistance concept should be used.

h,=5.9 W/m*-K
7, = 35—} L p [ =09

Skin/fat Insulation
ks = 0.3 Wik —1— k. = 0.014 W/im-K
= 0. mK——F——

T,, = 10°C—

T.=10°C
h =2 W/m2K (Air)
T T T h = 200 W/m2-K (Water)

|"'_ L5f =3 mm _Fl"_ lii"irls _hl

Air or
water



One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-1
» Steady-state conditions.

» One-dimensional heat transfer by conduction through the
skin/fat and insulation layers.

» Contact resistance is negligible.
» Radiation exchange between the skin surface and the
surroundings Is between a small surface and a large enclosure

at the air temperature.

» Liquid water is opaque to thermal radiation.



One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-l h,=5.9 Wim?-K

—e=095
T,=35°C —T T, =10°C—f

Skinffat | Insulation
—— k. = 0.014 Wm-K

k= 0.3 Wim-K

T.=10°C
h =2 W/im?K (Air)
T T T h = 200 W/m2-K (Water)

b L;=3mm e lf“ins —

Air or
water
1
hA
L L Ins




One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-1

T.-T. (35-10)K

Ry = —— oW = 025 KW

R = Lsf n L ins n ] + ] - o |
tot — 1L A 1/L A — a4
kA kA \1hA  1hA A

J'il-‘s.:t' ]
L. = k.| AR, — —
ns IRE[ tot k h I hr:|

3%10°m 1 ]

=0.014 Wm-K| 1.8 m* x 0.25 K/W —
[ 03W/m-K  (2+59) Wm-K

=0.0044 m = 4.4 mm



One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-1

Water

R . Lsf n Lins n ] + 1 ! o | Lsf + Lin‘s + |
tot P o . - T
kA kA \UhA  1hA A\ky k.. h+ h

mns

Lsf 1:|
1 — 1 AR[D[ - — —
Lm.s J.::1ns.|: L } h

3%107%m 1 ]
K

- " : o
0.014 W/m K[‘-S m™ X 0.2 KW == Wm K 200 W/m?-

=0.0061 m = 6.1 mm



One-Dimensional, Steady-State Conduction

1. The Plane Wall
Example-1

The skin surface temperature can be calculated by considering conduction
through the skin/fat layer:

T, 35°C - =095

T, =10°C—
Skin/fat Insulation i 0.014 Wim-k
— k=0 m=
ksfﬁ(]r} — TS) ky = 0.3 W/m-K "
= T_=10°C
L h =2 WimZK (Air)
sf h =200 W/m2-K (Water)
|‘_ Ls[ =3 mm _"I'"_ Lins _.'| T T T

Air or
water

I -3
kA 0.3 W/m-K X 1.8 m*

= 34.4°C




