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One-Dimensional, Steady-State Conduction 

 Conduction problems may involve multiple directions and time-dependent 

conditions 

 Inherently complex-difficult to determine temperature distributions. 

 In a one-dimensional system, temperature gradients exist along only a single 

coordinate direction, and heat transfer (diffusion) occurs exclusively in that 

direction.  

 In steady-state conditions, the temperature at each point is independent of 

time. 

 First, the heat transfer under this conditions will be discussed considering 

that there is no heat generation.   

The heat resistance will be introduced.  
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Methodology of a conduction analysis 
 

 
1. Specify appropriate form of the heat equation 

2. Solve for the temperature distribution 

3. Apply Fourier’s law to determine the heat flux 

Simplest case: 

One-dimensional, steady state conduction with no thermal energy generation 

Common geometries: 

 The plane wall: described in rectangular (x) coordinate. Area 

perpendicular to direction of heat transfer is constant (independent of 

x). 

 Cylindrical wall: radial conduction through tube wall. 

  Spherical wall: radial conduction through shell wall. 
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Methodology of a conduction analysis 
 

 
Common geometries 
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1. The Plane Wall 
Case e of 3-dimensional  
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1. The Plane Wall 
Using the following equation: 

 

 

 

 

Considering: (I) no heat generation, (II) steady-

state conditions and (Ii) one-dimensional flow:  

 

 

 

 

For constant k and A, this equation will be a 

second order differential equation: 
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1. The Plane Wall 
1-D heat conduction equation for steady-state 

conditions and no internal heat generation (i.e.  q = 

0), is 

 

 

 

 

 

 

The general solution of the equation is:  

 

 

 

 

 

Where C1 and C1, are constants which can be 

found from the boundary conditions of the 

system.  

This mean: 

Heat flux (q”x) is independent of x 

Heat rate (qx) is independent of x 

for constant k and A 
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1. The Plane Wall 
Boundary conditions  

In this system, first kind boundaries were used   

For boundary conditions: T(0) = Ts,1 and T(L) = Ts,2  

at x = 0, T(x) = Ts,1 and C2 = Ts,1  

at x = L, T(x) = Ts,2 and Ts,2 = C1 L + C2  = C1 L + Ts,1 

this gives, C1 = (Ts,2 – Ts,1)/2 

Using value of C1 and C2, the function of T(x) is 

From here, apply Fourier’s 

law to get heat transfer.  
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1. The Plane Wall 

Heat rate for plane wall: 

Heat flux for plane wall: 
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1. The Plane Wall 

Heat rate for plane wall: 

Heat flux for plane wall: 
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2. Thermal Resistance 

Just like the electrical conductivity and electrical resistivity, the thermal 

conductivity and thermal resistivity are related to each other: 

 

  

 

 

 

 By the same way, the heat transfer rate equation can be written as:     

 

 Recall electric circuit theory - Ohm’s law for electrical resistance: 

Resistance

e DifferencPotential
current Electric 
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2. Thermal Resistance 

Just like the electrical conductivity and electrical resistivity, the thermal 

conductivity and thermal resistivity are related to each other:  
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2. Thermal Resistance 

Considering the convection heat transfer at the 

surface: 

 

 

 

 In this regard, the modelling of heat resistance 

using circuit representations will be needed to 

include both modes. 

 The equivalent thermal circuit for the plane 

wall with convection surface conditions is 

shown here:  

 Since qx is constant throughout the system:   
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2. Thermal Resistance 

We can use this electrical analogy to represent heat transfer problems using the 

concept of a thermal circuit (equivalent to an electrical circuit). 

 

 

 

 

 

 

 

The conduction and convection resistances are in series and can be summed 
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3. The Composite Wall 

The thermal circuits for more complex 

systems, such as composite walls, in 

which various layers can be included in 

the wall. 

 For the wall shown here, the 

following equation can be used to 

introduce the heat transfer rate:       

 

 

 

  where T,1-T,4 is the overall temperature 

difference.  
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3. The Composite Wall 

For this wall, the overall heat transfer coefficient  U is used:  
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3. The Composite Wall 
Series-parallel type  

1. Surfaces normal to the 

x-direction are isothermal 

2. Surfaces parallel to the 

x-direction are adiabatic 
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4. Contact Resistance 
 Although neglected until now, it is important to recognize that, in composite 

systems, the temperature drop across the interface between materials may be 

appreciable. 

 This temperature change is attributed to what is known as the thermal 

contact resistance, Rt,c. 

q"X = q”gap + q”cont  
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4. Contact Resistance 



One-Dimensional, Steady-State Conduction 
4. Contact Resistance 
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5. Porous Media 
In many applications, heat transfer occurs within porous media that are 

combinations of a stationary solid and a fluid.  
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5. Porous Media 
Consider a saturated porous medium that is subjected to surface temperatures 

T1 at x = 0 and T2 at x = L. After steady-state conditions are reached and if T1  

T2, the heat rate may be expressed as: 
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5. Porous Media 
Heat rate may be expressed as 

 

 

where keff is an effective thermal conductivity of the porous system. 

 

 This equation is valid when there is no radiation heat transfer.   

This is valid for porosity less than 25% 
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1. The Plane Wall 

Example-1 
 Heat loss from the skin surface is (I) 146 W (air) and (II) 1320 W (water).   

 Calculate the thickness of the insulator  needed to reduce the heat transfer 

rate from this skin to 100 W in both cases (air and water).   
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1. The Plane Wall 

Example-1 
 To solve this problem, first the heat transfer modes, by which the heat from 

the skin is lost, should be introduced.  

 Total resistance concept should be used.  
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1. The Plane Wall 

Example-1 

 Steady-state conditions. 

 

 One-dimensional heat transfer by conduction through the 

skin/fat and insulation layers. 

 

 Contact resistance is negligible. 

 

 Radiation exchange between the skin surface and the 

surroundings is between a small surface and a large enclosure 

at the air temperature. 

 

 Liquid water is opaque to thermal radiation. 
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1. The Plane Wall 

Example-1 
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1. The Plane Wall 

Example-1 

Air 
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1. The Plane Wall 

Example-1 

Water 
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1. The Plane Wall 

Example-1 

The skin surface temperature can be calculated by considering conduction 

through the skin/fat layer: 


