
6/29/2016

1

BIG DATA:

TECHNOLOGIES AND APPLICATIONS

3. SQL

Il-Yeol Song, Ph.D.

College of Computing & Informatics

Drexel University

Philadelphia, PA 19104

Typical Database Development Process

2

Requirements
Analysis

Conceptual

Design

Logical

Design

Physical

Design

Operation, Mainte-

nace, & Tuning

Requirements

Specification

Conceptual

(ER)Model

Relational

Model

Database

Database

Physical

DBMS-layer

Employees are assigned to stations.

For employees we record their

employee ID, name, gender, and job

title…

Station (stationNo, StationName, Purpose,

openDate)

Employee (empID, empName, gender, jobTitle,

stationNo)

CREATE TABLE Station

(stationNo NUMBER(4) PRIMARY KEY,

stationName VARCHAR(50),…);

© Il-Yeol Song

© Il-Yeol Song

3

Introduction to SQL

• Pronounced ‘see-quel’

• Standard database language for defining/managing

databases

• American National Standards Institute (ANSI) and

ISO (International Organization for Standard)

standard

• Developed by IBM in 1974, System R project

• First commercial implementation by Oracle

Why SQL?

• SQL is relatively easy to learn:

 Commands

 It is non-procedural - you specify what information you
require, rather than how to get it;

• Called Declarative language

 It is essentially a free-format.

• The order of clauses are important

• Within each clause, the order is not important

• The de facto standard language for relational databases.

© Il-Yeol Song

6/29/2016

2

(c) Il-Yeol Song

5

SQL

• SQL functions fit into two broad categories:

 Data Definition Language (DDL)

• CREATE

• DROP

• ALTER

 Data Manipulation Language (DML)

• INSERT

• DELETE

• UPDATE

• SELECT

© Il-Yeol Song

6

An Overview of SQL Commands

1) Data Definition Overview

 --Creating a table

CREATE TABLE project (

projno NUMBER PRIMARY KEY,

p_name CHAR(20) NOT NULL,

budget NUMBER(8,2));

CREATE TABLE tableName

(

--details about attributes and

constraints

);

(c) Il-Yeol Song

7

An Overview of SQL

Commands

1) Data Definition Overview

 -- Changing attribute data type

ALTER TABLE project

MODIFY (budget NUMBER(9,2));

(c) Il-Yeol Song

8

An Overview of SQL Commands

Data Definition Overview (Cont’d)

 -- Adding a new attribute

ALTER TABLE project

ADD (manager CHAR(10));

 --Removing a table from database

DROP TABLE project;

6/29/2016

3

(c) Il-Yeol Song

9

An Overview of SQL Commands

3) Data manipulation (DML)

 --Inserting a row to a table

INSERT INTO project VALUES

(1234, 'Perfect Project', NULL, 'John’);

 --Changing a value of an attribute

UPDATE project SET budget = 1.1*budget

WHERE projno > 1000;

 --Deleting a row from a table

DELETE FROM project WHERE manager = 'John‘;

SQL - Query

--Complete Query Structure

SELECT pnumber, pname, count(*)

FROM project, works_on

WHERE project.pnumber = works_on.pno

GROUP BY pnumber, pname

HAVING count(*) > 3

ORDER BY pname;

(c) Il-Yeol Song

11

SELECT Statement

SELECT Specifies which columns to include

in output

FROM Specifies table(s) to be used

WHERE Filters rows with conditions

GROUP BY Forms groups of rows with same

column value.

HAVING Filters groups subject to some

condition.

ORDER BY Specifies the order of the output.

• Only SELECT and FROM are mandatory.

• Order of the clauses cannot be changed.

(c) Il-Yeol Song (c) Il-Yeol Song

12

SQL Syntax Rules

• SQL command ends with a semicolon

• SQL does not automatically remove

redundant values

• Commands are case-insensitive and space-

independent

• Data are case-sensitive

6/29/2016

4

Comparison Operators

• Comparison operators available in SQL:

= equals

<> is not equal to (ISO standard)

!= is not equal to (allowed in some dialects including Oracle)

< is less than <= is less than or equal to

> is greater than >= is greater than or equal to

• More complex conditions can be generated using

logical operators AND, OR, and NOT, with

parentheses to show the order of evaluation

13
© Il-Yeol Song

14

Example ERD and its meanings

Meaning of the ERD

• An Instructor teaches zero or many courses

• A course has zero or one Instructor.

• A TA is helping zero or one Course.

• A course has zero or one TA.

© Il-Yeol Song

15

Example ERD and RDB Schema

Instructor (instructorID, fName, SSN, deptCode, position, bonus)

TA (taID, SSN, studentID, salary)

Course (courseNo, sectionNo, title, units, deptCode, prereq, instructorID, taID

FOREIGN KEY (instructorID) REFERENCES Instructor(instructorID)

FOREIGN KEY (taID) REFERENCES TA (taID)

Relational Schema

Example: Course DB

Relational Schema

16

instructorID fName lName SSN deptCode position bonus

teachingAssistantID studentID salarySSN

courseNo title sectionNo units deptCode prerequisiteinstructorID teachingAssistantID

Instructor

TeachingAssistant

Course

Referential Integrity Diagram

© Il-Yeol Song

6/29/2016

5

Course DB – Data Dictionary

Instructor

TeachingAssistant

17

Column NULL? Type Comments

instructorID NOT NULL NUMNBER(2) Primary Key

fName VARCHAR2(20)

lName VARCHAR2(20)

SSN NUMBER(9) Unique

deptCode VARCHAR2(5)

position VARCHAR2(10) ‘assistant’,

‘associate’, or ‘full’

bonus NUMBER(7, 2)

Column NULL? Type Comments

teachingAssistantID NOT NULL NUMBER(2) Primary Key

SSN NUMBER(9) Unique

studentID NOT NULL NUMBER(3) Unique

salary NUMBER(7, 2)

© Il-Yeol Song

Course DB – Data Dictionary (cont.)

Course

18

Column NULL? Type Comments

courseNo NOT NULL VARCHAR2(10) Primary Key

title VARCHAR2(30)

sectionNo NOT NULL NUMBER(3) Primary Key

units NUMBER(2)

deptCode VARCHAR2(5)

instructorID NUMBER(2)

teachingAssistantID NUMBER(2)

Prerequisite VARCHAR2(10)

© Il-Yeol Song

Example: Tables of Course DB

19

courseNo title sectionNo units deptCode instructorID teachingAssistantID prerequisite

ACCT101 Accounting I 1 4 acct 44 92 None

ACCT101 Accounting I 2 4 acct 44 92 None

ACCT102 Accounting II 1 3 acct 89 37 ACCT101

MATH105 Algebra 1 3 math 76 None

teachingAssistantID SSN studentID salary

37 478902824 379 2500.00

92 352761903 574 5000.00

instructorID fName lName SSN deptCode position bonus

76 Andy Chou 467374211 math assistant 300.00

52 Chris Bowen 602497126 math associate 0.00

44 Jennifer Furman 290337845 acct assistant 800.00

89 Daniel Pradmore 589035216 acct full 300.00

Course

Instructor

TeachingAssistant

© Il-Yeol Song

Example Tables of Course Database

Instructor:

TeachingAssistant:

Course:

20

courseNo title sectionNo units deptCode instructorID teachingAssistantID prerequisite

ACCT101 Accounting I 1 4 acct 44 92 None

ACCT101 Accounting I 2 4 acct 44 92 None

ACCT102 Accounting II 1 3 acct 89 37 ACCT101

MATH105 Algebra 1 3 math 76 None

teachingAssistantID SSN studentID salary

37 478902824 379 2500.00

92 352761903 574 5000.00

instructorID fName lName SSN deptCode position bonus

76 Andy Chou 467374211 math assistant 300.00

52 Chris Bowen 602497126 math associate 0.00

44 Jennifer Furman 290337845 acct assistant 800.00

89 Daniel Pradmore 589035216 acct full 300.00

© Il-Yeol Song

6/29/2016

6

DDL for Course

Database

CREATE TABLE TeachingAssistant

(teachingAssistantID NUMBER(2) NOT NULL,

SSN NUMBER(9) UNIQUE,

studentID NUMBER(3) NOT NULL UNIQUE,

salary NUMBER (7, 2) CHECK (salary > 100.00),

CONSTRAINT TeachingAssistant_PK PRIMARY KEY (teachingAssistantID)

);

21
© Il-Yeol Song

CREATE TABLE Instructor
(instructorID NUMBER(2),
fName VARCHAR2(20),
lName VARCHAR2(20),
SSN CHAR(9) UNIQUE NOT NULL,
deptCode VARCHAR2(5),
position VARCHAR2(10) CHECK (position IN ('assistant', 'associate', 'full')),
bonus NUMBER (7, 2),
CONSTRAINT Instructor_PK PRIMARY KEY (instructorID));

DDL for Course Database

CREATE TABLE Course

(courseNo VARCHAR2(10) NOT NULL,

title VARCHAR2(30),

sectionNo NUMBER(3) NOT NULL,

units NUMBER(2),

deptCode VARCHAR2(5),

instructorID NUMBER(2),

teachingAssistantID NUMBER(2),

prerequisite VARCHAR2(10),

CONSTRAINT Course_PK PRIMARY KEY (courseNo,
sectionNo),

CONSTRAINT Course_FK1 FOREIGN KEY (instructorID)
REFERENCES Instructor(instructorID),

CONSTRAINT Course_FK2 FOREIGN KEY (teachingAssistantID)
REFERENCES TeachingAssistant(teachingAssistantID)
);

22
© Il-Yeol Song

© Il-Yeol Song23

Which table to create first?

•

?

© Il-Yeol Song24

Which table to create first?

•

?

6/29/2016

7

Q1: Retrieve All Columns, All Rows

• Q1: list all details of all teaching assistants

SELECT *

FROM TeachingAssistant;

• Result:

• An asterisk (*) stands for all columns

• WHERE clause is unnecessary when all rows are
required

25

teachingAssistantID SSN studentID salary

37 478902824 379 2500

92 352761903 574 5000

Q2: Retrieve Specific Columns, All Rows

• Q2: list the teaching assistant ID, salary, and SSN of all
teaching assistants

SELECT teachingAssistantID, salary, SSN

FROM TeachingAssistant;

• Result:

• The designated columns in the result table are in the order
specified in SELECT clause

• Unless specified, the rows in the result table may not be
sorted

26

teachingAssistantID salary SSN

37 2500 478902824

92 5000 352761903

Q3: Using DISTINCT Keyword to Eliminate Duplicates

• Q3: list the course title of all courses

SELECT title

FROM Course;

• Result:

27

title

Accounting I

Accounting I

Accounting II

Algebra

Q3: Using DISTINCT Keyword to Eliminate Duplicates (cont.)

• DISTINCT keyword is used to eliminate
duplicates

SELECT DISTINCT title

FROM Course;

• Result:

28

title

Accounting I

Accounting II

Algebra

6/29/2016

8

Q4: Calculated Fields

• Q4: Produce a list of monthly salaries for all teaching

assistants, showing teaching assistant ID and monthly salaries

SELECT teachingAssistantID, salary/12 AS monthlySalary

FROM TeachingAssistant;

• Result:

• salary/12 is a calculated field

• Give a column a (new) name using an AS clause
29

teachingAssistantID monthlySalary

37 208.333333

92 416.666667

Q5: Comparison Search Condition

• Q5: list the instructor ID and bonus of all instructors who
have more than $500.00 bonus

SELECT instructorID, bonus

FROM Instructor

WHERE bonus > 500.00;

• Result:

• Comparison: compare the value of one expression to the
value of another expression

30

instructorID bonus

44 800

Q6: Compound Comparison Search Condition

• Q6: list all details of all courses with the title Accounting I or

Accounting II

SELECT *

FROM Course

WHERE title = 'Accounting I' OR title = 'Accounting II';

• Result:

31

courseNo title sectionNo units deptCode instructorID teachingAssistantID prerequisite

ACCT101 Accounting I 1 4 acct 44 92 None

ACCT101 Accounting I 2 4 acct 44 92 None

ACCT102 Accounting II 1 3 acct 89 37 ACCT101

Q7: Range Search Condition

• Q7: list the instructor ID and bonus of all instructors who have bonus

between $400.00 and $800.00

SELECT instructorID, bonus

FROM Instructor

WHERE bonus BETWEEN 400.00 AND 800.00;

• Result:

• Range (BETWEEN/NOT BETWEEN): test whether the value of an expression

falls within a specified range of values

• The BETWEEN test includes the endpoints of the range

• Negated version of BETWEEN is NOT BETWEEN

32

instructorID bonus

44 800

6/29/2016

9

Q7: Range Search Condition (Cont.)

• BETWEEN test can be equally expressed using two

comparison tests

•We can use

SELECT instructorID, bonus

FROM Instructor

WHERE bonus>=400.00 AND bonus<=800.00;

to get the same result table in the previous slide

33

Q8: Set Membership Search Condition

• Q8: list the instructor ID and position of instructors who

are associate professors or full professors

SELECT instructorID, position

FROM Instructor

WHERE position IN (‘associate’, ‘full’);

• Result:

• Set membership (IN/NOT IN): test whether the value of an expression equals

one of a set of values

• Negated version (NOT IN) can be used to check for data values that are not in

a specific list of values

34

instructorID position

52 associate

89 full

Q8: Set Membership Search Condition (cont.)

• IN/NOT IN test can be equally expressed using multiple

comparison tests

• We can use

SELECT instructorID, position

FROM Instructor

WHERE position = 'associate' OR position = 'full';

to get the same result table in the previous slide

35

Exercises:

Find customer first name, last name, and phone number whose area

code is 215 and and whose balances are greater than 1000.

© Il-Yeol Song

36

6/29/2016

10

Q9: Pattern Match Search Condition

• Q9: list the instructor ID and last name of all instructors

whose last names contain character ‘o’

SELECT instructorID, lName

FROM Instructor

WHERE lName LIKE '%o%';

% : wild character for any #characters

_ : A wild character for a single character

• Result:

37

instructorID lName

76 Chou

52 Bowen

89 Pradmore

Q9: Pattern Match Search Condition

• Find instructor’s first name and last name, where the last

name begins with S and ends with Z and in the middle it

contains o and another character and d.

Select fname, lname

From instructor

Where lname like ‘S%o_d%Z’;

• Result:

38

instructorID lName

76 Chou

52 Bowen

89 Pradmore

Exercise:

What are the problems of this query?

SELECT fName, lName FROM Instructor

WHERE address LIKE '%Houston,TX%';

© Il-Yeol Song

39

Instructor

PK instructorID

 fName
 lName
 SSN
 deptCode
 position
 bonus
 hireDate
 address

?

Q10: NULL Search Condition

• Q10: list all details of the courses that have been assigned an

instructor but have not been assigned an teaching assistant

SELECT *

FROM Course

WHERE instructorID IS NOT NULL AND teachingAssistantID IS NULL;

• Result:

• Null search (IS NULL/IS NOT NULL): test whether a column

has a null value

40

courseNo title sectionNo units deptCode instructorID teachingAssistantID prerequisite

MATH105 Algebra 1 3 math 76 None

6/29/2016

11

Q11: Single-Column Ordering

• Q11: list instructor ID, name, and SSN of all instructors,

arranged in ascending order of instructorID

SELECT instructorID, fName, lName, SSN

FROM Instructor

ORDER BY instructorID ASC;

Or: SELECT instructorID, fName, lName, SSN

FROM Instructor

ORDER BY 1 ASC;

 “1” refers to the 1st column name in the SELECT list, i.e., instructorID

• Result:

41

instructorID fName lName SSN

44 Jennifer Furman 290337845

52 Chris Bowen 602497126

76 Andy Chou 467374211

89 Daniel Pradmore 589035216

Q12: Multiple Column Ordering

• More than one element can be included in the ORDER BY clause

• Q12: list all details of all courses, with first in ascending order of units,

second in ascending order of course No., and then in descending order of

section No.

SELECT *

FROM Course

ORDER BY units, courseNo, sectionNo DESC;

 Recall: ASC is default for units and courseNo

• Result:

42

courseNo title sectionNo units deptCode instructorID teachingAssistantID prerequisite

ACCT102 Accounting II 1 3 acct 89 37 ACCT101

MATH105 Algebra 1 3 math 76 None

ACCT101 Accounting I 2 4 acct 44 92 None

ACCT101 Accounting I 1 4 acct 44 92 None

Aggregate Functions

• Aggregation functions operate on a single column of a table and return

a single value

• Five aggregate functions:

 COUNT: returns the number of values in a specified column

 SUM: returns the sum of the values in a specified column

 AVG: returns the average of the values in a specified column

 MIN: returns the smallest value in a specified column

 MAX: returns the largest value in a specified column

• Where to use:

 In the SELECT list

 In the HAVING clause

43

Q13: COUNT (*)

• Q13: how many instructors have $300.00 or more

bonus?

SELECT COUNT(*) AS count

FROM Instructor

WHERE bonus >= 300.00;

• Result:

44

count

3

6/29/2016

12

Q14: COUNT (DISTINCT)

• Q14: how many different course titles are there?

SELECT COUNT(DISTINCT title) AS count

FROM Course;

• Result:

• In this example, DISTINCT keyword is used to eliminate

duplicate course titles

45

count

3

Q15: COUNT And SUM

• Q15: find the total number of assistant professors and the sum

of their bonus

SELECT COUNT(instructorID) AS count, SUM(bonus) AS sum

FROM Instructor

WHERE position = 'assistant';

• Result:

• In this example, the processing order of clauses: FROM

WHERE SELECT

46

count sum

2 1100

Q16: MIN, MAX, AVG

• Q16: find the minimum, maximum, and average bonus by

instructors

SELECT MIN(bonus) AS min,

MAX(bonus) AS max, AVG(bonus) AS avg

FROM Instructor;

• Result:

• In this example, all instructors are considered and therefore

WHERE clause is not needed

47

min max avg

0 800 350

Grouping Results Using GROUP BY Clause

• GROUP BY clause Produces a single summary row for each

group (e.g., ‘acct’ group or ‘math’ group)

• GROUP BY always comes after WHERE clause

• When GROUP BY clause is used

 The SELECT clause must include a combination of
column names and aggregate functions.

 GROUP BY must include all non-aggregate function
column names in the SELECT list.

Select, x, y, z, AVG(P)

From r

Group by ();

48
© Il-Yeol Song

6/29/2016

13

Q17: GROUP BY

• Q17: find the total number of instructors in each department and the
sum of their bonus, respectively

SELECT deptCode, COUNT(instructorID) AS count,

SUM(bonus) AS sum

FROM Instructor

GROUP BY deptCode

ORDER BY deptCode;

• Result:

• In this example, the processing order of clauses: FROM GROUP BY
SELECT ORDER BY

• Recall: all column names in the SELECT list must appear in the GROUP BY
clause unless the name is used only in an aggregate function

49

deptCode count sum

acct 2 1100

math 2 300

What’s wrong with the following query?

Suppose we have the Instructor table as follows.

•Find the deptCode and deptName, and the total
number of instructors in each department and the
sum of their bonus, respectively

SELECT deptCode, deptName,
COUNT(instructorID) AS count,

SUM(bonus) AS sum

FROM Instructor

GROUP BY deptCode

ORDER BY deptCode;

50© Il-Yeol Song

Exercise

51

Find the average price of all the products per vendor.

Order the output by vender code and product description

© Il-Yeol Song

Restricting Groupings Using HAVING Clause

• HAVING clause is used with GROUP BY clause to restrict the

groups that appear in the final result table

• HAVING clause vs. WHERE clause:

 Serve different purposes:

• WHERE clause filters individual rows going into the final

result table

• HAVING clause filters groups going into the final result table

• HAVING clause cannot be used without GROUP BY clause in a

SELECT statement

52

6/29/2016

14

Q18: HAVING Clause

• Q18: for each position type with more than one instructor, find the
total number of instructors and the sum of their bonus

SELECT position, COUNT(instructorID) AS count,

SUM(bonus) AS sum

FROM Instructor

GROUP BY position

HAVING COUNT(instructorID) > 1;

• Result:

• In this example, the processing order of clauses: FROM GROUP BY

HAVING SELECT

53

position count sum

assistant 2 1100

(c) Il-Yeol Song

54

Some More Queries

• --Allow date arithmetic

SELECT * FROM Order WHERE OrderDate

BETWEEN '01-MAY-2012' AND '07-MAY-2012';

• --String search using the wild card

SELECT FNAME, LNAME FROM EMP

WHERE ADDRESS LIKE '%Houston,TX%';

• --Calculate ages

SELECT Fname, Lname, Bday,

TRUNC (MONTHS_BETWEEN (SYSDate, Bday)/12)

"Actual Age“ FROM Person;

Subqueries

• Subquery (or nested query): a complete SELECT

statement is embedded within another SELECT

statement

• The results of this inner SELECT statement are

used in the outer SELECT statement to help

determine the final result

55

Q19: Subquery with Equality

• Q19: list all details of the teaching assistant of course ACCT102 Section 1

SELECT *

FROM TeachingAssistant

WHERE teachingAssistantID = (SELECT teachingAssistantID

FROM Course

WHERE courseNo = 'ACCT102'

AND sectionNo = 1);

• Temporary result of inner SELECT statement for the purpose of
explanation (it’s not actually displayed):

• Final result actually displayed:

56

teachingAssistantID SSN studentID salary

37 478902824 379 2500

teachingAssistantID

37

6/29/2016

15

Q20: Subquery With An Aggregate Function

• Q20: list the instructor IDs of instructors whose bonus are greater than the
average bonus, and show their bonus

SELECT instructorID, bonus

FROM Instructor

WHERE bonus > (SELECT AVG(bonus) FROM Instructor);

• Result:

• Recall: aggregation functions cannot be used in WHERE clause, thus we
cannot write “WHERE bonus > AVG(bonus)”

• When a subquery is one of the two operands involved in a comparison,
the subquery must appear on the right-hand side of the comparison

57

instructorID bonus

44 800

Q21: Nested Subqueries: Use of IN

• Q21: list all details of the instructors who teach courses that have teaching
assistants with salary of at least $2500.00

SELECT *

FROM Instructor

WHERE instructorID IN (SELECT DISTINCT instructorID

FROM Course

WHERE teachingAssistantID IN (SELECT teachingAssistantID

FROM TeachingAssistant

WHERE salary >= 2500.00));

• Result:

• For nested subqueries, work from the innermost query outwards

• When more than one value is found from subquery, use keyword IN
rather than = to evaluate the equality

58

instructorID fName lName SSN deptCode position bonus

44 Jennifer Furman 290337845 acct assistant 800

89 Daniel Pradmore 589035216 acct full 300

(c) Il-Yeol Song

59

JOIN

• JOIN is the relational operation that combines data

stored in two tables, creating a new result table

SELECT <attributes_to_be_displayed>

FROM A, B

WHERE A.key = B.key;

JOIN Conditions in the form of
A.PK = B.FK

Two tables to be joined

(c) Il-Yeol Song

60

JOIN

• JOIN follows the PK-FK chain of the two related tables.

SELECT *

FROM student, department

WHERE student.deptNO = department.deptNO;

PK
PK FK

6/29/2016

16

How to Write a Join?

• How to combine information from two tables by join?

 Form pairs of related rows from two tables where the value of PK

of a table A matches with a value of FK of another table.

A.PK = B.FK

 To write a join:

(a) List more than one table name in the FROM clause, using a

comma as a separator, and

• e.g., FROM student, department

(b) Typically use a WHERE clause to specify the join condition(s)

• e.g., WHERE student.deptNO = department.deptNO

61

Visualization of JOIN

join produces only the set of
records that match in both Table
A and Table B.

Q24: For each department, find
manager’s SSN and name.

SELECT Dnumber, EmpSSN,
Name

FROM Employee, Department

WHERE Employee.EmpSSN=
Department.Mgrssn;

• Steps of performing JOIN

- Compare each EmpSSN with
each of MgrSSN.

- Select only those rows their
values match

TABLE A (EMPLOYEE)

EMPSSN NAME

888665555 Bill

333445555 Mary

123456789 John

999887777 Kate

TABLE B (DEPARTMENT)

DNUMBER MGRSSN

5 333445555

4 999887777

1 888665555

© Il-Yeol Song 62

Visualization of JOIN

How JOIN is executed?

SELECT Dnumber, EmpSSN,

Name

FROM Employee, Department

WHERE Employee.EmpSSN=

Department.Mgrssn;

Processing steps:

- For each row of Employee table,

compare each EmpSSN with

each value of MgrSSN.

- Select only rows their values

match

Question: How many total number

of comparisons do we need for this

data sets?

TABLE A (EMPLOYEE)

EMPSSN NAME

888665555 Bill

333445555 Mary

123456789 John

999887777 Kate

TABLE B (DEPARTMENT)

DNUMBER MGRSSN

5 333445555

4 999887777

1 888665555

DNUMBER EMPSSN NAME

5 333445555 Mary

4 999887777 Kate

1 888665555 Bill

Visualization of JOIN
SELECT Dnumber, EmpSSN, Name

FROM Employee, Department

WHERE Employee.EmpSSN=

Department.Mgrssn;

JOIN algorithm:

FOR each row in Employee table

LOOP

IF EmpSSN = MGRSSN

THEN select the row

Question: How many total number of

comparisons do we need for this

data sets?

Answer: Since EMPLOYEE table has 4 rows

and Department table has 3 rows, the

total number of comparisons we need for

the above join is 4*3= 12 comparisons

TABLE A (EMPLOYEE)

EMPSSN NAME

888665555 Bill

333445555 Mary

123456789 John

999887777 Kate

TABLE B (DEPARTMENT)

DNUMBER MGRSSN

5 333445555

4 999887777

1 888665555

DNUMBER EMPSSN NAME

5 333445555 Mary

4 999887777 Kate

1 888665555 Bill

#comparisons needed for the join

between tables A and B is:

|A| * |B|

Where |A| = cardinality (the number of

rows) of table A

6/29/2016

17

Join Operation

• JOIN is performed between two tables, which has a

PK-FK relationship.

 If your FROM clause contains 2 tables, you need

one join.

 If your FROM clause contains 3 tables, you need

two joins.

 If your FROM clause contains N tables, you need

N-1 joins.

65
© Il-Yeol Song

Exercise: Join with aggregate functions

For each vendor name, find min price, max price, and average price of all the

products supplied by each vendor. Also display vendor code. Sort output by

vendor name.

66
© Il-Yeol Song

(c) Il-Yeol Song

67

JOIN

• JOIN is the power of RDBMS

• JOIN is the most time-consuming operation in the

queries

• Fortunately, modern DBMSs automatically

optimize queries

 CBO (Cost-based optimization)

• Use data statistics to optimize queries

Alias

• An alias can be used for a table named in the FROM
clause, where the alias is separated from the table name
with a space

 e.g., FROM Instructor i, Course c

 Can two different tables have the same alias?

• When can an alias be used?

 Used to qualify a column name whenever there is
ambiguity regarding the source of the column name

 e.g., WHERE i.instructorID = c.instructorID

 Also used as a shorthand notation for the table name

• An alias can be used anywhere in place of the table name

68
© Il-Yeol Song

6/29/2016

18

© Il-Yeol Song

69

Using Table Alias

• The following commands are the same:

• SELECT P_Code, Vendor.V_Code, V_Name

FROM Product, Vendor

WHERE Product.V_Code = Vendor.V_code;

• SELECT P_Code, V.V_Code, V_Name

FROM Product P, Vendor V

WHERE P.V_Code = V.V_code;

• SELECT P .P_Code, V.V_Code, V.V_Name

FROM Product P, Vendor V

WHERE P.V_Code = V.V_code;

• In Access

SELECT P_Code, V.V_Code, V_Name

FROM Product AS P, Vendor AS V

WHERE P.V_Code = V.V_code;

Sorting a Simple Join

• list the instructor IDs, names, and course numbers, titles, and section
numbers that they teach, and order results by instructor IDs (ASC),
course numbers (ASC), & section numbers (DESC)

SELECT i.instructorID, fName, lName, courseNo, title,
sectionNo

FROM Instructor i, Course c

WHERE i.instructorID = c.instructorID

ORDER BY i.instructorID, courseNo ASC, sectionNo DESC;

• Result:

• In the SELECT list, i.instructorID qualifies that instructorID is chosen from
Instructor table. Such qualification is achieved by prefixing the column name
with the proper table name (or its alias)

• Note: instructorID exists in the PK in Instructor and an FK in Course 70

instructorID fName lName courseNo title sectionNo

44 Jennifer Furman ACCT101 Accounting I 2

44 Jennifer Furman ACCT101 Accounting I 1

76 Andy Chou MATH105 Algebra 1

89 Daniel Pradmore ACCT102 Accounting II 1

© Il-Yeol Song

71

Exercise

• Find customer names who order status is

back_ordered. Assume Orders.status has one

value from {shipped, unshipped, back_ordered}

Q23: Three-table Joining

• For each course that has an instructor and a teaching assistant, list its

courseNo, title, sectionNo, instructor ID & name, teachingAssistantID

& studentID

SELECT courseNo, title, sectionNo, i.instructorID, fName,

lName, t.teachAssistantID, studentID

FROM Instructor i, Course c, TeachingAssistant t

WHERE i.instructorID = c.instructorID AND

t.teachingAssistantID = c.teachingAssistantID;

• Result:

72

courseNo title sectionNo instructorID fName lName teachingAssistantID studentID

ACCT101 Accounting I 1 44 Jennifer Furman 92 574

ACCT101 Accounting I 2 44 Jennifer Furman 92 574

ACCT102 Accounting II 1 89 Daniel Pradmore 37 379

6/29/2016

19

Review on SQL
• SQL is a standard database language

• The two major components of SQL are DDL and DML.

• The process of creating a database:
• Define a table using CREATE TABLE commands

• Insert data using INSERT INTO commands

• Use SELECT command to process queries

• Use UPDATE TABLE command to change the data

• Use DELETE FROM command to delete rows

• Use DROP TABLE command to drop the table

• JOIN combines two tables into a single table via matching
rows of a PK-FK chain

• In relational database, a table must have been defined
first before you insert the data

Il-Yeol Song, Ph.D. | 736/29/2016

Summary of Relational Data Bases

• A relational database consist of a set of inter-related tables

• Each table should represent one and only one concept

• It is best to design a relational database by creating an entity-

relationship diagram first.

• Each table has a Primary Key (PK) that uniquely identifies each row

• AN attribute that is a PK in another table is called a foreign Key (FK)

• The logical structure of the database is called database schema.

• A table is related to another table via a PK-FK chain

• A relational database maintains the integrity of interrelated tables with

referential integrity constrains

• The ACID property guarantees reliability of transactions

• SQL is a high-level easy-to-use database language used for

creating/altering/manipulating databases

74

Points to Think about Relational Database
• Do you think SQL is easy to learn?

• What are the limitations of relational databases to be used
in Big Data?

• How RDB can handle Volume?

• How RDB can handle Velocity?

• How RDB can handle Variety?

• How RDB can handle Veracity?

Il-Yeol Song, Ph.D. | 756/29/2016

