CHAPTER 5

INTRODUCTION TO VALUATION:
 time Value of money

BASIC DEFINITIONS

- Present Value - earlier money on a time line
- Future Value - Iater money on a time line
- Interest rate - "exchange rate" between earlier money and later money
- Discount rate
- Cost of capital
- Opportunity cost of capital
- Required return

FUTURE VALUES - EXAMPLE 1

- Suppose you invest \$1,000 for one year at 5\% per year. What is the future value in one year?
- Interest = 1,000(.05) = 50
- Value in one year = principal + interest = $1,000+50=1,050$
- Future Value (FV) $=1,000(1+.05)=1,050$
- Suppose you leave the money in for another year. How much will you have two years from now?
- $\mathrm{FV}=1,000(1.05)(1.05)=1,000(1.05)^{2}=$ 1,102.50

FUTURE VALUES: GENERAL FORMULA

- $F V=P V(1+r)^{\dagger}$
- FV = future value
- PV = present value
- r = period interest rate, expressed as a decimal
- $\dagger=$ number of periods
- Future value interest factor $=(1+r)^{\dagger}$

EFFECTS OF COMPOUNDING

- Simple interest vs. Compound interest
- Consider the previous example
- FV with simple interest $=1,000$ + $50+50=1,100$
- FV with compound interest $=1,102.50$
- The extra 2.50 comes from the interest of $.05(50)=2.50$ earned on the first interest payment

FUTURE VALUES - EXAMPLE 2

- Suppose you invest the $\$ 1,000$ from the previous example for 5 years. How much would you have?
- 5 N; 5 I/Y; 1,000 PV
- CPT FV = -1,276.28
- The effect of compounding is small for a small number of periods, but increases as the number of periods increases. (Simple interest would have a future value of $\$ 1,250$, for a difference of $\$ 26.28$.)

FUTURE VALUES - EXAMPLE 3

- Suppose you had a relative deposit \$10 at 5.5\% interest 200 years ago. How much would the investment be worth today?
- 200 N; $5.5 \mathrm{I} / \mathrm{Y} ; 10 \mathrm{PV}$
- CPT FV = -447,189.84
- What is the effect of compounding?
- Simple interest $=10+200(10)(.055)=120.00$
- Compounding added \$447,069.84 to the value of the investment

FUTURE VALUE AS A GENERAL GROWTH FORMULA

- Suppose your company expects to increase unit sales of widgets by 15% per year for the next 5 years. If you sell 3 million widgets in the current year, how many widgets do you expect to sell in the fifth year?
- 5 N;15I/Y; 3,000,000 PV
- CPT FV = -6,034,072 units
(remember the sign convention)

PRESENT VALUES

- How much do I have to invest today to have some amount in the future?
- FV = PV $(1+r)^{\dagger}$
- Rearrange to solve for PV $=\mathrm{FV} /(1+r)^{\dagger}$
- When we talk about discounting, we mean finding the present value of some future amount.
- When we talk about the "value" of something, we are talking about the present value unless we specifically indicate that we want the future value.

PRESENT VALUE - ONE PERIOD EXAMPLE

- Suppose you need $\$ 10,000$ in one year for the down payment on a new car. If you can earn 7% annually, how much do you need to inves \dagger today?
- $P V=10,000 /(1.07)^{1}=9,345.79$
- Calculator
- 1 N
- 7 I/Y
- 10,000 FV
- CPT PV = -9,345.79

PRESENT VALUES - EXAMPLE 2

- You want to begin saving for your daughter's college education and you estimate that she will need \$150,000 in 17 years. If you feel confident that you can earn 8\% per year, how much do you need to invest today?
- $N=17 ; 1 / Y=8 ; ~ F V=150,000$
- CPT PV = -40,540.34 (remember the sign convention)

PRESENT VALUES - EXAMPLE 3

- Your parents set up a trust fund for you 10 years ago that is now worth $\$ 19,671.51$. If the fund earned 7% per year, how much did your parents invest?
- N = 10; I/Y = 7; FV = 19,671.51
- CPT PV = -10,000

PRESENT VALUE - IMPORTANT RELATIONSHIP I

- For a given interest rate - the longer the time period, the lower the present value
- What is the present value of $\$ 500$ to be received in 5 years? 10 years? The discount rate is 10%
- 5 years: $\mathrm{N}=5 ; \mathrm{I} / \mathrm{Y}=10 ; \mathrm{FV}=500$ CPT PV $=-310.46$
- 10 years: $\mathrm{N}=10 ; \mathrm{I} / \mathrm{Y}=10 ; \mathrm{FV}=500$

CPT PV $=-192.77$

PRESENT VALUE - IMPORTANT RELATIONSHIP II

- For a given time period - the higher the interest rate, the smaller the present value
- What is the present value of $\$ 500$ received in 5 years if the interest rate is 10% ? 15% ?
- Rate $=10 \%: N=5 ; I / Y=10 ; F V=500$ CPT PV = -310.46
- Rate = 15\%; $N=5 ; \mathrm{I} / \mathrm{Y}=15 ; \mathrm{FV}=500$ CPT PV $=-248.59$

THE BASIC PV EQUATION - REFRESHER

- $\mathrm{PV}=\mathrm{FV} /(1+r)^{\dagger}$
- There are four parts to this equation
- PV, FV, r and \dagger
- If we know any three, we can solve for the fourth
- If you are using a financial calculator, be sure to remember the sign convention or you will receive an error (or a nonsense answer) when solving for r or \dagger

DISCOUNT RATE

- Often we will want to know what the implied interest rate is on an investment
- Rearrange the basic PV equation and solve for r
$=F V=P V(1+r)^{\dagger}$
$-r=(F V / P V)^{1 / t}-1$
- If you are using formulas, you will want to make use of both the y^{x} and the $1 / x$ keys

DISCOUNT RATE - EXAMPLE 1

- You are looking at an investment that will pay $\$ 1,200$ in 5 years if you invest $\$ 1,000$ today. What is the implied rate of interest?
- r $=(1,200 / 1,000)^{1 / 5}-1=.03714=3.714 \%$
- Calculator - the sign convention matters!!!
- $\mathrm{N}=5$
- $P V=-1,000$ (you pay 1,000 today)
- $F V=1,200$ (you receive 1,200 in 5 years)
- CPT I/Y = 3.714\%

DISCOUNT RATE - EXAMPLE 2

- Suppose you are offered an investment that will allow you to double your money in 6 years. You have \$10,000 to invest. What is the implied rate of interest?
- $\mathrm{N}=6$
- PV = - 10,000
- FV = 20,000
- CPT I/Y = 12.25\%

DISCOUNT RATE - EXAMPLE 3

- Suppose you have a 1-year old son and you want to provide \$75,000 in 17 years towards his college education.
- You currently have \$5,000 to invest.
- What interest rate must you earn to have the \$75,000 when you need it?
- $N=17 ; P V=-5,000 ; F V=75,000$
- CPT I/Y = 17.27\%

FINDING THE NUMBER OF PERIODS

- Start with the basic equation and solve for \dagger (remember your logs)
- $\mathrm{FV}=\mathrm{PV}(1+r)^{\dagger}$
- $\dagger=\ln (F V / P V) / \ln (1+r)$
- You can use the financial keys on the calculator as well; just remember the sign convention.

NUMBER OF PERIODS - EXAMPLE 1

- You want to purchase a new car, and you are willing to pay $\$ 20,000$.
- If you can invest at 10% per year and you currently have $\$ 15,000$, how long will it be before you have enough money to pay cash for the car?
- $1 / Y=10 ; P V=-15,000 ; F V=20,000$
- CPT N = 3.02 years

NUMBER OF PERIODS - EXAMPLE 2

- Suppose you want to buy a new house.
- You currently have \$15,000, and you figure you need to have a 10% down payment plus an additional 5% of the loan amount for closing costs.
- Assume the type of house you want will cost about $\$ 150,000$ and you can earn 7.5% per year.
- How long will it be before you have enough money for the down payment and closing costs?

NUMBER OF PERIODS - EXAMPLE 2 CONTINUED

- How much do you need to have in the future?
- Down payment $=.1(150,000)=15,000$
- Closing costs $=.05(150,000-15,000)=6,750$
- Total needed $=15,000+6,750=21,750$
- Compute the number of periods
- Using a financial calculator:
- PV = -15,000; FV = 21,750; I/Y = 7.5
- CPT N = 5.14 years
- Using the formula:
" $\dagger=\ln (21,750 / 15,000) / \ln (1.075)=5.14$ years

