Corporate Finance

Prof. Pedro Saffi

SKKU International Summer Semester (ISS) 2016
Session 2 - Time Value of Money
UNIVERSITY OF
CAMBRIDGE
Judge Business School

Roadmap

- Calculating Present Values
- Annuities \& Perpetuities
- Applying these formulas in real life.

Present and Future Values

- Present and Future Values:
- Compounding a single lump sum.
- Discounting a single lump sum.
- Compounding more than once a year.
- Compounding and discounting many cash flows.

Present and Future Values: Part I

- Discounting a single lump sum:

$$
P V_{t}=\frac{C}{(1+r)^{t}}
$$

- Compounding a single lump sum:

$$
F V_{t}=C *(1+r)^{t}
$$

- Annuity: PV of fixed amount C for t periods:

$$
P V_{t}=\frac{C}{r} \times\left(1-\frac{1}{(1+r)^{t}}\right)
$$

- Future value of a fixed amount C at the end of t periods:

$$
F V_{t}=\frac{C}{r} \times\left((1+r)^{t}-1\right)
$$

Present and Future Values: Part II

- Perpetuity: PV of fixed amount C forever:

$$
P V_{t}=\frac{C}{r}
$$

- Annuity: PV of fixed amount C for t periods with growth:

$$
P V_{t}=\frac{C}{r-g} \times\left(1-\left(\frac{1+g}{1+r}\right)^{t}\right)
$$

Example I

- Suppose you owe $\$ 2000$ on a VISA card, and the interest rate is 2% per month. If you make the minimum monthly payments of $\$ 50$, how long will it take you to pay it off?

Example II

- You have just won the lottery. The payoff is a million dollars. Except the lottery promises to pay you \$100,000 every year for the next 10 years. If the discount rate is 8%, what is the real value of your prize?

Example III: Cheap Financing and Rebate

SALE! SALE!

7.59\%* ${ }^{*}$ FINANCING OR $\$ 500$ REBATE

only $\$ 61,500$
*7.59\% APR on 36 month loan.

- TF Banks are making 10\% car loans. Should you choose the 7.59% financing from the car company or should you borrow the money from the bank and go for the $\$ 500$ rebate?

Example III: Cheap Financing and Rebate

- Assuming no down payment, 36 month loan and monthly compounding:
- Bank: $\mathrm{PV}=\$ 61,000, r=\frac{.10}{12}=0.833 \%$ p.m., $\mathrm{t}=36$.

$$
61,000=\frac{C}{(0.833 \%)} \times\left(1-\frac{1}{(1+0.833 \%)^{36}}\right) \Rightarrow C=1968.29
$$

- Car company: $\mathrm{PV}=\mathbf{\$ 6 1 , 5 0 0}, r=\frac{.0759}{12}=0.6325 \%$ p.m., $\mathrm{t}=36$.

$$
61,000=\frac{C}{(0.6325 \%)} \times\left(1-\frac{1}{(1+0.6325 \%)^{36}}\right) \Rightarrow C=1915.58
$$

- Cheaper to go with the financing option!

Example IV: Kangaroo vs Turtle

- Kangaroo Autos is offering free credit on a new $\$ 10,000$ car. You pay $\$ 1,000$ down and then $\$ 300$ a month for the next 30 months.
- Turtle Motors next door does not offer free credit but gives you $\$ 1,000$ off the list price. If the rate of interest is 10%, APR which company is offering the better deal?
- Kangaroo Motors costs:

$$
P V=1,000+\frac{300}{\left(\frac{0.1}{12}\right)} \times\left(1-\frac{1}{\left(1+\frac{0.1}{12}\right)^{30}}\right) \Rightarrow P V=8,934.11
$$

- Kangaroo is cheaper than the $\$ 9,000$. Here we compare PVs directly.

Example V: Annuities and Perpetuities with Growth

- You own an oil pipeline which will generate a $\$ 2$ million cash return over the coming year. Operating costs are negligible and it is expected to last for a very long time.
- Unfortunately, the volume of oil shipped is declining and cash flows are expected to decline by four percent per year. The discount rate is 10%.
- Question A: What is the present value of the pipeline's cash flows if its cash flows are expected to last forever?
- Question B: What is the present value of the cash flows if the pipeline is scrapped after 20 years?

Example V: Annuities and Perpetuities with Growth

- Part A requires a perpetuity with growth.
- We have $C F=\$ 2,000,000 ; r=10 \% ; g=-4 \%$.

$$
P V=\frac{2,000,000}{0.1-0.04}=\$ 14,285,714 .
$$

- Part B requires an annuity with growth.
- We have $C F=\$ 2,000,000 ; r=10 \% ; g=-4 \% ; t=20$ years.

$$
P V=\frac{2,000,000}{0.1-0.04} \times\left(1-\left(\frac{1-0.04}{1+0.10}\right)^{20}\right) \Rightarrow P V=13,347,131 .
$$

Example VI: Annuities and Perpetuities with Growth

- You have just read an advertisement reading: "Pay us \$100 a year for 10 years and we will pay you $\$ 100$ a year thereafter in perpetuity".
- If this is a fair deal, what is the rate of interest?
- We have an annuity right now for 10 years and a perpetuity after that.

$$
\begin{gathered}
\frac{100}{r} \times \frac{1}{(1+r)^{10}}=\left[\frac{100}{r} \times\left(1-\left(\frac{1}{1+r}\right)^{10}\right)\right] \Rightarrow \\
1=\frac{2}{(1+r)^{10}} \Rightarrow r=2^{\frac{1}{10}}-1 \Rightarrow r=7.17 \%
\end{gathered}
$$

